亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

對數的概念教學設計

時間:2022-04-28 15:56:06 教學設計 我要投稿

對數的概念教學設計(精選6篇)

  作為一位杰出的教職工,通常會被要求編寫教學設計,教學設計是實現教學目標的計劃性和決策性活動。寫教學設計需要注意哪些格式呢?下面是小編為大家整理的對數的概念教學設計(精選6篇),歡迎閱讀與收藏。

對數的概念教學設計(精選6篇)

  對數的概念教學設計1

  一、內容與解析

  (一)內容:對數函數的性質

  (二)解析:本節課要學的內容是對數函數的性質及簡單應用,其核心(或關鍵)是對數函數的性質,理解它關鍵就是要利用對數函數的圖象.學生已經掌握了對數函數的圖象特點,本節課的內容就是在此基礎上的發展.由于它是構造復雜函數的基本元素之一,所以對數函數的性質是本單元的重要內容之一.的重點是掌握對數函數的性質,解決重點的關鍵是利用對數函數的圖象,通過數形結合的思想進行歸納總結。

  二、目標及解析

  (一)教學目標:

  1.掌握對數函數的性質并能簡單應用

  (二)解析:

  (1)就是指根據對數函數的兩類圖象總結并理解對數函數的定義域、值域、單調性、奇偶性、函數值的分布特征等性質,并能將這些性質應用到簡單的問題中。

  三、問題診斷分析

  在本節課的教學中,學生可能遇到的問題是底數a對對數函數圖象和性質的影響,產生這一問題的原因是學生對參量認識不到位,往往將參量等同于自變量.要解決這一問題,就是要將參量的取值多元化,最好應用幾何畫板的快捷性處理這類問題,其中關鍵是應用好幾何畫板.

  四、教學支持條件分析

  在本節課()的教學中,準備使用(),因為使用(),有利于().

  五、教學過程

  問題1.先畫出下列函數的簡圖,再根據圖象歸納總結對數函數 的相關性質。

  設計意圖:

  師生活動(小問題):

  1.這些對數函數的解析式有什么共同特征?

  2.通過這些函數的圖象請從值域、單調性、奇偶性方面進行總結函數的性質。

  3.通過這些函數圖象請從函數值的分布角度總結相關性質

  4.通過這些函數圖象請總結:當自變量取一個值時,函數值隨底數有什么樣的變化規律?

  問題2.先畫出下列函數的簡圖,根據圖象歸納總結對數函數 的相關性質。

  問題3.根據問題1、2填寫下表

  圖象特征函數性質

  a>10<a<1a>10<a<1

  向y軸正負方向無限延伸函數的值域為R+

  圖象關于原點和y軸不對稱非奇非偶函數

  函數圖象都在y軸右側函數的定義域為R

  函數圖象都過定點(1,0)

  自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數減函數

  在第一象限內的圖象縱坐標都大于0,橫坐標大于1在第一象限內的圖象縱坐標都大于0,橫標大于0小于1

  在第四象限內的圖象縱坐標都小于0,橫標大于0小于1在第四象限內的圖象縱坐標都小于0,橫標大于1

  [設計意圖]發現性質、弄清性質的來龍去脈,是為了更好揭示對數函數的本質屬性,傳統教學往往讓學生在解題中領悟。為了扭轉這種方式,我先引導學生回顧指數函數的性質,再利用類比的思想,小組合作的形式通過圖象主動探索出對數函數的性質。教學實踐表明:當學生對對數函數的圖象已有感性認識后,得到這些性質必然水到渠成

  例1.比較下列各組數中兩個值的大小:

  (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

  (3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

  變式訓練:1. 比較下列各題中兩個值的大小:

  ⑴ log106 log108 ⑵ log0.56 log0.54

  ⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

  2.已知下列不等式,比較正數m,n 的大小:

  (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

  (3) log a m < loga n (0 log a n (a>1)

  例2.(1)若 且 ,求 的取值范圍

  (2)已知 ,求 的取值范圍;

  對數的概念教學設計2

  教學目標:

  1、理解對數的概念,能夠進行對數式與指數式的互化;

  2、滲透應用意識,培養歸納思維能力和邏輯推理能力,提高數學發現能力。

  教學重點:

  對數的概念

  教學過程:

  一、問題情境:

  1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?

  (2)假設2002年我國國民生產總值為a億元,如果每年平均增長8%,那么經過多少年國民生產總值是2002年的2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、問題:已知底數和冪的值,如何求指數?你能看得出來嗎?

  二、學生活動:

  1、討論問題,探究求法、

  2、概括內容,總結對數概念、

  3、研究指數與對數的關系、

  三、建構數學:

  1)引導學生自己總結并給出對數的概念、

  2)介紹對數的表示方法,底數、真數的含義、

  3)指數式與對數式的關系、

  4)常用對數與自然對數、

  探究:

  ⑴負數與零沒有對數、

  ⑵,、

  ⑶對數恒等式(教材P58練習6)

  ①;②、

  ⑷兩種對數:

  ①常用對數:;

  ②自然對數:、

  (5)底數的取值范圍為;真數的取值范圍為、

  四、數學運用:

  1、例題:

  例1、(教材P57例1)將下列指數式改寫成對數式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)將下列對數式改寫成指數式:

  (1);(2)3=—2;(3);(4)(補充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

  ⑴;⑵;⑶(補充)、

  2、練習:

  P58(練習)1,2,3,4,5、

  五、回顧小結:

  本節課學習了以下內容:

  ⑴對數的定義;

  ⑵指數式與對數式互換;

  ⑶求對數式的值(利用計算器求對數值)、

  六、課外作業:P63習題1,2,3,4、

  對數的概念教學設計3

  1教學目標

  1、理解對數的概念,了解對數與指數的關系;掌握對數式與指數式的互化;理解對數的性質,掌握以上知識并形成技能。

  2、通過事例使學生認識對數的模型,體會引入對數的必要性;通過師生觀察分析得出對數的概念及對數式與指數式的互化。

  3、通過學生分組探究進行活動,掌握對數的重要性質。通過做練習,使學生感受到理論與實踐的統一。

  4、培養學生的類比、分析、歸納能力,嚴謹的思維品質以及在學習過程中培養學生探究的意識。

  2學情分析

  現階段大部分學生學習的自主性較差,主動性不夠,學習有依賴性,且學習的信心不足,對數學存在或多或少的恐懼感。通過對指數與指數冪的運算的學習,學生已多次體會了對立統一、相互聯系、相互轉化的思想,并且探究能力、邏輯思維能力得到了一定的鍛煉。因此,學生已具備了探索發現研究對數定義的認識基礎,故應通過指導,教會學生獨立思考、大膽探索和靈活運用類比、轉化、歸納等數學思想的學習方法。

  3重點難點

  重點 :

  (1)對數的概念;

  (2)對數式與指數式的相互轉化。

  難點 :

  (1)對數概念的理解;

  (2)對數性質的理解。

  4教學過程

  4.1第一學時

  教學活動 活動1【導入】創設情境 引入新課

  引例(3分鐘)

  1、一尺之棰,日取其半,萬世不竭。

  (1)取5次,還有多長?

  (2)取多少次,還有0.125尺?

  分析:

  (1)為同學們熟悉的指數函數的模型,易得

  (2)可設取x次,則有

  抽象出:

  2、xx年我國GPD為a億元,如果每年平均增長8%,那么經過多少年GPD是xx年的2倍?

  分析:設經過x年,則有

  抽象出:

  對數的概念教學設計4

  教學目標

  1. 在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題.

  2. 通過對數函數的學習,樹立相互聯系,相互轉化的觀點,滲透數形結合,分類討論的思想.

  3. 通過對數函數有關性質的研究,培養學生觀察,分析,歸納的思維能力,調動學生學習的積極性.

  教學重點,難點

  重點是理解對數函數的定義,掌握圖像和性質.

  難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質.

  教學方法

  啟發研討式

  教學用具

  投影儀

  教學過程

  一. 引入新課

  今天我們一起再來研究一種常見函數.前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

  反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

  提問:什么是指數函數?指數函數存在反函數嗎?

  由學生說出 是指數函數,它是存在反函數的.并由一個學生口答求反函數的過程:

  由 得 .又 的值域為 ,

  所求反函數為 .

  那么我們今天就是研究指數函數的反函數-----對數函數.

  二.對數函數的圖像與性質 (板書)

  1. 作圖方法

  提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.

  由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時,要求學生做到:

  (1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

  學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

  2. 草圖.

  教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標系內,如圖:

  然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

  3. 性質

  (1) 定義域:

  (2) 值域:

  由以上兩條可說明圖像位于 軸的右側.

  (3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.

  (4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

  (5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

  當 時,在 上是減函數,即圖像是下降的.

  之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

  當 時,有 ;當 時,有 .

  學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

  最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

  對圖像和性質有了一定的了解后,一起來看看它們的應用.

  三.鞏固練習

  練習:若 ,求 的取值范圍.

  四.小結

  五.作業 略

  對數的概念教學設計5

  教學目標:

  1.進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題.

  2.培養學生數形結合的思想,以及分析推理的'能力.

  教學重點:

  對數函數性質的應用.

  教學難點:

  對數函數的性質向對數型函數的演變延伸.

  教學過程:

  一、問題情境

  1.復習對數函數的性質.

  2.回答下列問題.

  (1)函數y=log2x的值域是 ;

  (2)函數y=log2x(x≥1)的值域是 ;

  (3)函數y=log2x(0

  3.情境問題.

  函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?

  二、學生活動

  探究完成情境問題.

  三、數學運用

  例1 求函數y=log2(x2+2x+2)的定義域和值域.

  練習:

  (1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.

  (2)函數 ,x(0,8]的值域是 .

  (3)函數y=log (x2-6x+17)的值域 .

  (4)函數 的值域是_______________.

  例2 判斷下列函數的奇偶性:

  (1)f (x)=lg (2)f (x)=ln( -x)

  例3 已知loga 0.75>1,試求實數a 取值范圍.

  例4 已知函數y=loga(1-ax)(a>0,a≠1).

  (1)求函數的定義域與值域;

  (2)求函數的單調區間.

  練習:

  1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結論的序號).

  2.函數y=lg( -1)的圖象關于 對稱.

  3.已知函數 (a>0,a≠1)的圖象關于原點對稱,那么實數m= .

  4.求函數 ,其中x [ ,9]的值域.

  四、要點歸納與方法小結

  (1)借助于對數函數的性質研究對數型函數的定義域與值域;

  (2)換元法;

  (3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合).

  五、作業

  課本P70~71-4,5,10,11.

  對數的概念教學設計6

  教學目標:

  (一)教學知識點:1.對數函數的概念;2.對數函數的圖象和性質.

  (二)能力訓練要求:1.理解對數函數的概念;2.掌握對數函數的圖象和性質.

  (三)德育滲透目標:1.用聯系的觀點分析問題;2.認識事物之間的互相轉化.

  教學重點:

  對數函數的圖象和性質

  教學難點:

  對數函數與指數函數的關系

  教學方法:

  聯想、類比、發現、探索

  教學輔助:

  多媒體

  教學過程:

  一、引入對數函數的概念

  由學生的預習,可以直接回答“對數函數的概念”

  由指數、對數的定義及指數函數的概念,我們進行類比,可否猜想有:

  問題:1.指數函數是否存在反函數?

  2.求指數函數的反函數.

  3.結論

  所以函數與指數函數互為反函數.

  這節課我們所要研究的便是指數函數的反函數——對數函數.

  二、講授新課

  1.對數函數的定義:

  定義域:(0,+∞);值域:(-∞,+∞)

  2.對數函數的圖象和性質:

  因為對數函數與指數函數互為反函數.所以與圖象關于直線對稱.

  因此,我們只要畫出和圖象關于直線對稱的曲線,就可以得到的圖象.

  研究指數函數時,我們分別研究了底數和兩種情形.

  那么我們可以畫出與圖象關于直線對稱的曲線得到的圖象.

  還可以畫出與圖象關于直線對稱的曲線得到的圖象.

  請同學們作出與的草圖,并觀察它們具有一些什么特征?

  對數函數的圖象與性質:

  (1)定義域:

  (2)值域:

  (3)過定點,即當時,

  (4)上的增函數

  (4)上的減函數

  3.練習:

  (1)比較下列各組數中兩個值的大小:

  (2)解關于x的不等式:

  思考:(1)比較大小:

  (2)解關于x的不等式:

  三、小結

  這節課我們主要介紹了指數函數的反函數——對數函數.并且研究了對數函數的圖象和性質.

  四、課后作業

  課本P85,習題2.8,1、3

【對數的概念教學設計(精選6篇)】相關文章:

初中數學概念課的教學設計03-17

《對數函數》課件設計05-08

《對數函數》教學反思04-19

對數的性質10-12

《對數函數及其性質》教學反思04-18

對數的運算性質10-12

結構抗震概念設計論文03-30

精選《觀潮》教學設計 教案教學設計11-15

離騷的精選教學設計12-19

對數的數學教案范文03-22