六年級數學《正比例》教學設計范文(精選5篇)
作為一位不辭辛勞的人民教師,總歸要編寫教學設計,教學設計是把教學原理轉化為教學材料和教學活動的計劃。那么優秀的教學設計是什么樣的呢?下面是小編為大家整理的六年級數學《正比例》教學設計范文(精選5篇),歡迎大家借鑒與參考,希望對大家有所幫助。
六年級數學《正比例》教學設計1
【教學目標】
1、使學生理解正比例的意義,能根據正比例的意義判斷是不是成正比例。
2、培養學生概括能力和分析判斷能力。
3、培養學生用發展變化的觀點來分析問題的能力。
【教學重難點】
重點:
成正比例的量的特征及其斷方法。
難點:
理解兩個變量之間的比例關系,發現思考兩種相關聯的量之間的變化規律。
【教學過程】
一、四顧舊知,復習鋪墊
商店里有兩種包裝的襪子,一種是5雙一包的,售價為25元,一種是8雙一包的,售價為32元。哪種襪子更便宜?
學生獨立完成后師提問:你們是怎樣比較的?
生:我先求出每種襪子的單價,再進行比較。
師:你是根據哪個數量關系式進行計算的?
生:因為總價=單價×數量,所以單價=總價÷數量。
師:如果單價不變,商品的總價和數量的變化有什么規律呢?這節課,我們就來研究正比例。(板書:正比例)
二、引導探索,學習新知
1、教學例1,學習正比例的意義。
(1)結合情境圖,觀察表中的數據,認識兩種相關聯的量。師出示自學提示:表中有哪兩種量?總價是怎樣隨著數量的變化而變化的?學生自學并在組內交流。全班交流。
(2)認識相關聯的量。明確:像這樣,一種量變化,另一種量也隨著變化,這兩種量叫做相關聯的量。
2、計算表中的數據,理解正比例的意義。
(1)計算相應的總價與數量的比值,看看有什么規律。學生計算后匯報:===…=3、5,每一組數據的比值一定。
(2)說一說,每一組數據的比值表示什么?(彩帶的單價,也就是彩帶的單價是一個固定的數)
(3)請學生用公式把彩帶的總價、數量、單價之間的關系表示出來。
(4)明確成正比例的量及正比例關系的意義。兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。如果用字母y和x表示兩種相關聯的量,用字母k表示它們的比值(一定),正比例關系可以用下面的式子表示:
3、列舉并討論成正比例的量。
(1)生活中還有哪些成正比例的量?預設:速度一定,路程與時間成正比例;長方形的寬一定,面積和長成正比例。
(2)小結:成正比例的量必須具備哪些條件?哪個條件是關鍵?
兩種量中相對應的兩個數的比值一定,這是關鍵。
4、認識正比例圖象。(課件出示例1的表格及正比例圖象)
(1)觀察表格和圖象,你發現了什么?
(2)把數對(10,35)和(12,42)所在的點描出來,再和上面的圖象連起來并延長,你還能發現什么?
無論怎樣延長,得到的都是直線。
(3)從正比例圖象中,你知道了什么?
生1:可以由一個量的值直接找到對應的另一個量的值。
生2:可以直觀地看到成正比例的量的變化情況。
(4)利用正比例圖象解決問題。
不計算,根據圖象判斷,如果買9m彩帶,總價是多少?49元能買多少米彩帶?
小明買的彩帶的米數是小麗的2倍,他花的錢是小麗的幾倍?預設生:因為在單價一定的情況下,數量與總價成正比例關系,小明買的彩帶的米數是小麗的2倍,他花的錢也應是小麗的2倍。設計意圖:先從觀察圖象入手,引導學生直觀認識相關聯的量,再結合表中的數據,引導學生發現總價與數量的比值一定,使學生理解正比例的意義,最后結合正比例圖象,把數據與點聯系起來,根據圖象,不用計算就能找到一個量的值所對應的另一個量的值,使學生在解決問題的同時,感受數形結合思想。
三、課堂練習:
1、P46“做一做”
2、練習九第1、3~7題
六年級數學《正比例》教學設計2
教學內容:
教科書第62—63頁的例1、“試一試”和“練一練”,第66頁練習十三的第1—3題。
教學目標:
1、使學生經歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據正比例的意義判斷兩種相關聯的量是不是成正比例。
2、使學生在認識成正比例的量的過程中,初步體會數量之間相依互變的關系,感受有效表示數量關系及其變化規律的不同數學模型,進一步培養觀察能力和發現規律的能力。
3、使學生進一步體會數學與日常生活的密切聯系,增強從生活現象中探索數學知識和規律的意識。
教學重難點:
理解相關聯的兩個量及正比例的意義,并能正確判斷兩種量是否成正比例
學情分析
1、學生在學習本單元之前已經學習了比和比例的有關知識,會解決按比例分配的簡單數學問題。
2、有一些樸素的正、反比例概念。學生在中已經積累了一些這方面的經驗,比如坐車時間越長,行走的距離就越遠等。
多媒體運用:ppt課件
教學過程:
一、教學例1
1、談話引出例1的表格,讓學生說一說表中列出了哪兩種量。
2、引導學生觀察表中的數據,說一說這兩種量的數值分別是怎樣變化的。
可先讓同桌相互說一說,再組織全班交流。通過交流,使學生初步感知兩種量的變化情況:行駛的時間擴大,路程也隨著擴大;行駛的時間縮小,路程也隨著縮小。
小結:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。
3、引導學生進一步觀察表中的數據,找一找這兩種量的變化的規律,啟發學生從“變化”中去尋找“不變”。
學生可能會從不同的角度去尋找規律。
教師可根據交流的實際情況,及時引導學生通過計算確認這一規律,并有意識地從后一種角度突出這一規律。
如果學生發現不了上述規律,可引導學生寫出幾組相對應的`路程與時間的比,并求出比值。
4、根據上面發現的規律,進一步啟發學生思考:這個比值表示什么?上面的規律能不能用一個式子來表示?
根據學生的回答,教師板書關系式:路程時間=速度(一定)
5、教師對兩種量之間的關系作具體說明:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。當路程和對應時間的比的比值總是一定,也就是速度一定時,行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
(板書:路程和時間成正比例)
二、教學“試一試”
1、要求學生根據表中的已知條件先把表格填寫完整。
2、根據表中的數據,依次討論表格下面的四個問題,并仿照例1作適當的板書。
3、讓學生根據板書完整地說一說鉛筆的總價和數量成什么關系。
三、抽象表達正比例的意義
1、引導學生觀察上面的兩個例子,說說它們有什么共同點。
2、啟發學生思考:如果用字母x和y分別表示兩種相關聯的量,用k表示它們的比值,正比例關系可以用怎樣的式子來表示?
根據學生的回答,板書關系式。
四、鞏固練習
1、完成第63頁的“練一練”。
先讓學生獨立思考并作出判斷,再要求說明判斷理由。
2、做練習十三第1~3題。
第1題讓學生按題目要求先各自算一算、想一想,再組織討論和交流。
第2題先讓學生獨立進行判斷,再指名說判斷的理由。
第3題要先讓學生說說題目要求我們把已知的正方形按怎樣的比放大,放大后正方形的邊長各是幾厘米,再讓學生在圖上畫一畫。
填好表格后,組織學生討論,明確:只有當兩種相關聯的量的比值一定時,它們才能成正比例。
五、全課小結
這節課你學會了什么?通過這節課的學習,你還有哪些收獲?
六年級數學《正比例》教學設計3
教學要求:
使學生進一步理解和掌握正、反比例中每個概念的含義;更熟練地判斷兩種相關聯的量是不是成比例的量。如果成比例,成什么比例。
進一步提高解決簡單實際問題的能力。
教學過程:
提出本課復習題
基本概念的復習
什么叫兩種相關聯的量?
下面兩種相關聯的量哪些量成比例?成比例的是成正比例還需成反比例?
什么樣的兩種量成正比例關系?什么樣的兩種量成反比例關系?
成正比例關系的量與成反比例關系的量有什么異同點?
應用練習
完成教材97頁的“做一做”。
第3題在完成時可先把題中的等式變一變形,像y=8x變成y/x=8;把y=8/y變成xy=8,這樣判斷起來就方便了。
鞏固練習
完成教材99頁第6~7題。
全課總結(略)
教學目標:
使學生進上步理解和掌握比和比例的意義與性質。
區別有關易混概念,進上步提高運用所學知識能力,為今后的學習打下良好的基礎。
教學過程:
講述本課復習課題并板書
基本概念的復習
比和比例的意義與性質。
什么叫比?什么叫比例?(就學生所舉的例子再讓學生說說比和比例中各部分的名稱),比的后項為什么不能是0?
比和分數、除法有什么聯系?
說說比的基本性質的比例的基本性質?
比的基本性質與比例的基本性質各有什么用處?
看教材95頁的歸納整理,并把基本性質欄中的空填上,說說根據什么填寫的?
完成教材95的“做一做”。
結合第3題讓學生說說什么叫做解比例?根據是什么?
示比值和化簡比。
獨立完成教材96頁上的題目。
說說求比值與化簡比的區別?
(求比值是根據比的意義。用前項除以后項,得到結果是一個數;化簡比是根據比的基本性質,把比的前項和后項,同時乘以(或除以)相同的數(0除外),得到的結果是一個最簡整數比)。
看書中的表,總結方法。
完成教材96頁的“做一做”
比例尺
問題:1)什么叫做比例尺?說說“圖距”、“實距”、“比例尺”三者之間的關系。
2)一幢教學大樓平面圖的比例尺是1/100,這比例尺表示的是什么意思?
比例尺除寫成數字化形式處,還可怎樣表示?
完成教材97頁上的“做一做”。(理解比例尺實質上是一個比,此比的前項與后項表示的意義是什么。)
練習鞏固
完成教材十九頁第1~4題。
全課總結(略)
六年級數學《正比例》教學設計4
一、教材分析
【復習內容】
教科書第12冊第94頁“整理與反思”和95—96頁的“練習與實踐”5—10
【知識要點】
1、正比例和反比例的區別與聯系:
相同點不同點
特征關系式
正比例兩種相關聯的量兩種量中相對應的兩個數的比的比值(也就是商)一定=k(一定)
反比例兩種量中相對應的兩個數的積一定x×y=k(一定)
與老教材相比,新教材進一步加強正、反比例的概念教學,突出正比例關系的圖像及簡單應用,重視正、反比例與現實生活的聯系,淡化脫離現實背景判斷比例關系,不安排應用正、反比例關系解決實際問題。
2、圖上距離和實際距離的比,叫做這幅圖的比例尺。
圖上距離:實際距離=比例尺或=比例尺
【教學目標】
1、使學生進一步認識成正比例和反比例的量,掌握兩種量是否成比例、成什么比例的思考方法。
2、使學生通過掌握判斷兩種相關聯的量是否成正比例或反比例的方法,提高分析、判斷的能力。
3、使學生進一步體會比和比例知識的應用價值,感受不同領域的數學內容之間的密切聯系。認識成正比例和反比例的量,使學生感受正、反比例是描述數量關系及其變化規律的又一種有效的數學模型。
二、教學建議
復習正比例和反比例,重點是它們的意義。教材讓學生回憶判斷兩種量是否成正比例或反比例的方法,重溫正比例關系的特征是兩種相關聯變量的商保持一定,反比例關系的特征是兩種相關聯變量的積保持一定。再通過第7、8題的判斷,進一步鞏固正比例和反比例的概念。第9題復習正比例的圖像,其中汽車行駛的路程和耗油量是否成正比例,要利用圖像找出幾組相對應的數,組成比并求出比值,根據正比例的意義進行判斷。
復習比例尺的知識僅編排一道題,利用平面圖的比例尺和量出的圖上距離,計算相應的實際距離。教學第10題要說說這幅平面圖的比例尺和具體含義,從線段比例尺得出數值比例尺,回憶比例尺的意義和算法。要通過解題歸納求實際距離的方法及注意點,還要說說怎樣求圖上距離。
三、知識鏈結
1、正比例和反比例(教科書六下P62例1、例2、P63例3)
2、比例尺(教科書六下P48例6、P49例7)
四、教學過程
(一)正比例和反比例的意義。
1、教師提問:根據正比例和反比例的意義,我們怎樣判斷兩種量是否成正比例或反比例關系?(小組討論后,交流)
2、小結:第一,這兩種量是不是相互關聯?其中一種量是否隨著另一種量的變化而變化?第二,這兩種量中每一組對應的數的比值(或積)是否一定。
3、舉出一些生活中成正比例或反比例量的例子,在小組里交流。
例如:黃瓜的單價一定,數量和總價成正比例。因為,第一,數量和總價這兩種量是相互關聯的,其中一種量總價隨著另一種量數量的變化而變化。第二,這兩種量中每一組對應的數的比值都是單價。單價一定,所以這兩種量是成正比例的量。
(二)練一練
1、下表中兩種量成比例嗎?為什么?
加數122、51424
加數1827、5166
總噸數422610024、4
余下噸數41259923、4
因數35320
因數159101、5
學生說一說每張表中,第一,這兩種量是不是相互關聯?其中一種量是否隨著另一種量的變化而變化?第二,這兩種量中每一組對應的數的比值(或積)是否一定。再作出相應的判斷
2、完成教科書95頁“練習與實踐”
第7題:讓學生先獨立做,再講評。講評時注意幫助學生解決困難。
第8題:引導學生列舉幾組對應的數值再具體分析每組中兩個數的關系后再判斷。
第9題:其中第1小題讓學生根據圖中標出的點的位置算出相應的耗油量與行駛路程的比值,再作判斷。(行駛75千米的耗油量是6升。)第2小題讓學生在教材提供的方格圖上描點、連線,再引導學生聯系畫出的圖象判斷汽車在市區行駛時,行駛的路程與耗油量成不成正比例。體會數形結合在解決問題方面的價值。
(三)復習比例尺
1、教師提問:什么叫比例尺?比例尺有幾種類型?舉例說說它的意思?(重點是線段比例尺)
2、舉例說說怎樣求圖上距離?怎樣求實際距離。
3、完成教科書95頁“練習與實踐”第10題。
(四)評價小結:
學了本課你對所學知識有什么新認識?還有什么問題?
習題精編
一、對號入座。
1、在比例尺是1:4000000的地圖上,圖上距離1厘米表示實際距離()千米。也就是圖上距離是實際距離的1(),實際距離是圖上距離的()倍。
2、一幅圖的比例尺是,那么圖上的1厘米表示實際距離();實際距離50千米在圖上要畫()厘米。把這個線段比例尺改寫成數值比例尺是()。
3、一種微型零件的長5毫米,畫在圖紙上長20厘米,這幅圖的比例尺是()。
4、判斷下列各題中兩種量是否成比例?成什么比例?
(1)路程一定,車輪的周長和車輪滾動的圈數。( )
六年級數學《正比例》教學設計5
教學內容:
蘇教版六數下83—84頁“整理與反思”和“練習與實踐”1—6題。
教材分析:
教材第83頁的“整理與反思”主要是復習比的意義和性質,以及成正比例和反比例的量。教材先引導學生結合具體的例子回憶并整理比的意義、基本性質以及比的應用,再用填空的形式幫助學生進一步明確比與分數、除法的關系。在此基礎上,要求說說比的基本性質與分數的基本性質、商不變的規律有什么聯系與區別。這樣的比較有利于學生體會比的基本性質與分數的基本性質、商不變規律內在的一致性,有利于學生加深對比與分數、除法的理解,促進學生對數學知識的靈活運用。
教學目標
1、使學生進一步理解比的意義和基本性質以及比與分數、除法的關系;理解比的基本性質與分數的基本性質、商不變的規律內在一致性;理解比例的意義和基本性質。
2、運用比較的方法,有利于學生對所學知識的理解,促進學生對數學知識的靈活運用。
3、能運用比和比例的知識解決一些簡單實際問題,豐富解決問題策略,積累解決問題的經驗。
教學重、難點重點:
正確理解正比例、反比例的意義,運用比例的基本性質判斷兩個比能否組成比例。
難點:
運用比例的知識解決一些簡單的實際問題。
課前準備課件。
教學流程設計意圖
一、比的知識:
1、舉例說說什么是比?什么是比的基本性質?
2、說一說用比的知識可以解決哪些實際問題。
3、完成教科書第83頁“練習與實踐”。
(1)完成第一題:學生獨立數出班上男女生人數,再完成此題。
(2)完成第二題:兩人一組,互相量一量,算一算合作完成后,全班交流結果,讓學生比較后回答有什么發現。
二、比和分數、除法的聯系
出示:a∶b=()÷()=(b≠0)
1、先填空,再說說這樣填的根據是什么?
2、說說比的基本性質與分數的基本性質、商不變的規律的聯系。
3、練一練:
(1)判斷:比的前項和后項都乘或都除以相同的數,比值不變。()
(2)填空:
=()÷()=()∶()
(填好后展示學生不同的結果。)
三、比例的知識
1、什么是比例?
2、比和比例有什么關系?(小組討論后交流)
3、比例的基本性質是什么?
4、比例的基本性質有什么作用?怎樣解比例?
5、練一練:完成教材第83頁的“練習與實踐”。
(1)完成第3題:在做第二小題時先讓學生估計,再說估計的理由。
估計后再算一算,來驗證估計。
(2)完成第3題:解比例,做好后選兩題驗算一下。
四、完成教材第84頁“練習與實踐”。
(1)完成第4題:先學生獨立做最后交流,第二小題應弄清東部地區的耕地面積占全國耕地面積的93%,可理解為東部地區的耕地面積占全國耕地面積的。換句話說把全國耕地面積看作100份,東部占93份,西部占7份。使學生加深對比與百分數關系的理解。
(2)完成第5題:
第一小題讓學生獨立得出:深色與淺色地磚鋪地面積的
比是20∶40,化簡得1∶2。
第二小題這兩種地磚鋪地面積,讓學生利用按比例分配的方法計算。
(3)完成第6題。
五、評價小結:
學了本課你對所學知識有什么新認識?還有什么問題?
通過讓學生回憶比和比的基本性質,從而自然進入復習序列,從比到比例。
溝通比、分數和除法的關系,為接下來比較比的基本性質、分數的基本性質、除法商不變的規律奠定基礎。
對比和比例進行比較,強化理解,進一步優化知識結構。
復習解比例。
應用比例分配知識解決實際問題。
【六年級數學《正比例》教學設計范文(精選5篇)】相關文章:
正比例教學反思02-14
正比例教學反思02-14
《正比例關系》教學反思范文12-25
人教版數學六年級上冊教學設計范文01-05
數學必修四教學設計范文01-04
數學教學設計(精選15篇)12-27
六年級數學教學設計01-17
初中數學教學設計03-03
幼兒數學教學設計02-15
六年級數學下冊 正比例的意義說課稿11-11