圓的面積教學設計(通用5篇)
作為一位優秀的人民教師,有必要進行細致的教學設計準備工作,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創造性的決策,以解決怎樣教的問題。教學設計應該怎么寫才好呢?下面是小編收集整理的圓的面積教學設計(通用5篇),僅供參考,希望能夠幫助到大家。
圓的面積教學設計1
目標預設:
1、使學生經歷操作、觀察、估算、驗證、討論和歸納等數學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。
2、使學生進一步體會轉化的方法的價值,培養學生運用已有知識解決實際問題和合情推理的能力,培養空間觀念,并滲透極限思想。
教學過程:
一、引導估計,初步感知。
1、出示圓形電腦硬盤。引導學生思考:要求這個硬盤的面積就是要求什么?圓面積的大小與什么有關?
2、估計圓面積大小與半徑的關系。
師先畫一個正方形,再以正方形的邊長為半徑畫一個圓,估計圓的面積大約是正方形面積的多少倍,在這里正方形邊長是r,用字母表示正方形的面積是多少?圓的面積與它的半徑有什么關系?
二、動手操作,共同探索。
1、引發轉化,形成方案。
。1)我們如何推導三角形,平行四邊形,梯形的面積公式的?
。2)準備如何去推導圓的面積?
2、動手操作,共同探究
。1)把一個圓平均分成了8份,每一份的圖形是什么形狀?能把這些近似的三角形拼成一個學過的圖形嗎?
。2)動手操作。同桌為一組,把課前準備的16份拼一拼,能否拼成一個近似的平行四邊形。
。3)比較:與剛才老師拼成的圖形有何不同?
。4)想象:如果我們把這個圓平均分成32份、64份……拼成的圖形有何變化呢?
如果一直這樣分下去,拼成的圖形會怎么樣?
3、引導比較,推導公式。
圓與拼成的長方形之間有何聯系?
引導學生從長方形的面積,長寬三個角度去思考。
根據學生回答,相機板書。
長方形的面積=長×寬
↓↓↓
圓的面積=∏rr
=∏r2
追問:課始我們的估算正確嗎?
求圓的面積一般需要知道什么條件?
三、應用公式,解決問題
1、基本訓練,練練應用公式,求圓的面積。
2、解決問題
。1)出示例9,引導學生理解題意。
要求噴水器旋轉一周噴灌的面積就是求什么?噴水距離5米是指什么?
(2)學生計算
。3)交流,突出5平方的計算
四、鞏固練習
1、練習十九1求課始出示的光盤的面積
2、在一塊長方形的草地上,一只羊被3米長的繩子拴在草地正中央的樁上(接頭不計)這只羊最多能吃到多大面積的草?
五、這節課你有什么收獲?你認為重點的
地方有哪些?
引導學生回顧圓面積的推導過程,知道圓周長如何求面積?總結圓面積計算的方法)
六、課堂作業
補充習題51頁2、3、4題
拓展右圖中正方形的面積是8平方厘米。已知圓的直徑如何求面積,已知圓的周長如何求面積。
圓的面積是多少平方厘米?
反思:
1、變教教材為用教材教,教材通過例7,用數方格的方法讓學生初步感知圓面積的計算公式,具體過程是這樣的:先讓學生用數方格的方法數出1/4圓的面積,再推出圓的面積,然后填寫表格,通過觀察數據,發現圓面積與它的半徑的關系,整個過程費時又費力,教學時出示例7的圖形,在教師的引領下,讓學生估算圓的面積,從而發現圓的面積與半徑的關系,省時又省力,為本課重難點的掌握,贏得了時間。在推導出計算公式后,不急于進行例9的教學而讓學生做練一練中的.題目,在學生掌握了圓面積計算公式后,再學習例9,解決實際問題,符合學生的認知規律。
2、重視動手操作,參與知識的形成過程,當學生探究思維的火花被點燃時,教師巧妙地引導示范、演示,一步步深入挖掘學生的創造性,荷蘭數學教育家費賴登塔爾認為:數學學習是一種活動,這種活動與游泳騎自行車一樣不經過親身體驗,僅僅看書本聽講解觀察他人的演示是學不會的,因此在關鍵的“化圓為方”環節中,讓學生動手操作親身體驗,促使學生的思維由量變到質變,同時操作活動中又巧妙地利用學生的想象把分割過程無限細化,滲透極限思想。
3、數學來源于生活,又應用于生活,噴水器噴水、光盤、羊吃草問題都是學生常見的生活情境,通過把生活中的問題數學化,學生既體驗到活用數學知識,解決問題的快樂,也感受到數學的實際應用價值。羊吃草問題,引發了學生對視而不見的生活現象的“數學思考”。同時羊吃草范圍的圓,看不見摸不著,需要學生想象力的參與,在練習層次上加深了一步。過早地解決實際問題,不利于學生基本技能的形成。
圓的面積教學設計2
一、教材內容:
本節課內容是求圓的面積
二、教學目標:
知識目標:
、乓龑W生通過觀察了解圓的面積公式的推導過程
、茙椭鷮W生掌握圓的面積公式,并能應用公式解決實際問題、
能力目標:使學生了解從“未知”到“已知”的轉化過程,逐漸培養學生的抽象思維能力。
情感目標:通過實例引入,讓學生體驗數學來源于生活,又服務于生活;向學生展示生動、活潑的數學天地,喚起學生學習數學的興趣,使全體學生積極參與探索,在參與中體驗成功的樂趣。
三、教學重點難點:
重點:圓的面積公式的推導過程以及圓的面積公式的應用。
難點:在圓的面積公式推導過程中,學生對圓的無限平均分割,“弧長”無限的接近“線段”的理解以及將圓轉化為長方形時,長方形的長是圓的周長的一半的理解。
四、教學流程
1、復習遷移,做好鋪墊
師問:
。1)長方形面積公式
(2)平行四邊形面積公式
師:平行四邊形面積公式的求法是借住誰來推導出來的?
2、創設情景,引入課題
用多媒體出示:一只小牛被它的主人用一根長2米的繩子栓在草地上,問小牛能夠吃草的面積有多大?
問題:
。1)小牛能夠吃草的最大面積是一個什么圖形?
。2)如何求圓的面積呢?
3、師生互動,探索新知
。1)師:平行四邊形面積可以轉化成長方形面積,那么圓的面積該怎么辦呢?
(2)讓學生動手操作:
教師將課前準備好的圓分給各小組(前后四人為一組)。請同學們試試看,將圓轉是否可以化成我們已學過的圖形,并求出它的面積。
。3)讓學生轉化的過程進行展示。(略)(多組學生展示)
。4)用多媒體進行驗證。
讓學生閉起眼睛想一想是不是分得的份數越多拼成的圖形越接近于長方形。
師:若把圓平均分得的份數越多,拼成的圖形就越接近于一個長方形,它的面積也就越接近了這個長方形的面積。
(5)引導歸納:
思考1:既然圓的面積無限接近于長方形。那么我們如何根據長方形的面積來推導圓的面積公式呢?
思考2:長方形的長、寬與圓有什么關系呢?
再次多媒體展示動畫。
師:若圓的半徑為r,則圓的周長為2πr,從而得出長方形長=πr,寬=r,
即:圓的面積=長方形的面積=長×寬=πr×r
得到:s圓=πr×r
師:要求圓的'面積必須知道什么條件?若不知半徑必須先求出半徑再求出圓的面積。
4、實際應用,強化新知
。1)利用公式解決實際問題:求小牛吃草的最大面積是多少?
師:強調書寫格式:a寫出公式b代入數字c計算結果d寫出單位。
。2)出示例題:
例題1:已知一個圓的直徑為24分米,求這個圓的面積?
a、讓學生獨立練習,b、指名板演,c、師生評議。
例2、一個圓形花壇,周圍欄桿的長是25、12米,這個花壇的種植面積是多少?(π≈3、14)
a、學生獨立練習,b、指名板演,c、師生訂正。
師:引導學生對三道題進行分析比較,歸納出求圓的面積方法。
5、鞏固練習,深化新知
1、判斷題
(1)圓的半徑擴大到原來的3倍,圓的面積也擴大到原來的3倍。()
。2)半徑為2厘米的圓的周長與面積相等。()
2、把邊長為2厘米的正方形剪成一個最大的圓,求這個圓的面積。
3、一塊直徑為20厘米的圓形鋁板上,有2個半徑為5厘米的小孔,這塊鋁板的面積是多少
6、課內總結,梳理新知
師:(1)本節所學的主要公式是什么?
(2)如果求圓的面積,必須知道什么量?
(3)已知圓的周長、圓的直徑是否也可以求圓的面積呢?如何求。
7、布置作業
圓的面積教學設計3
教學內容分析:
圓的面積是學生認識了圓的特征、學會計算圓的周長以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。由于以前所學圖形的面積計算都是直線圖形面積的計算,而像圓這樣的曲邊圖形的面積計算,學生還是第一次接觸到,所以具有一定的難度和挑戰性。教學關鍵之處在于學生通過觀察猜想、動手操作、計算驗證,自主探索、推導出圓的面積公式并能靈活應用圓的面積公式解決實際問題。因此本課的教學應緊緊圍繞“轉化”思想,引導學生聯系已學知識把新知識納入已有知識中分析、研究、歸納,從而完成對新知的建構過程,建立數學模型,培養解決問題的綜合能力。
學生情況分析:
小學對幾何圖形的認識很大程度屬于直觀幾何的學習階段,而幾何本身比較抽象的。本節內容學生從認識直線圖形發展到認識曲線圖形,又是一次飛躍,但從學生思維角度看,六年級學生具有一定的抽象和邏輯思維能力。這一學段中的學生已經有了許多機會接觸到數與計算、空間圖形等較豐富的數學內容,已經具備了初步的歸納、類比和推理的數學活動經驗,并具有了轉化的數學思想。所以教學時應注意聯系現實生活,組織學生利用學具開展探索性的數學活動,注重知識發現和探索過程,使學生感悟轉化、極限等數學思想,從中獲得數學學習的積極情感,體驗和感受數學的力量。同時在學習活動中,要使學生學會自主學習和小組合作,培養學生解決數學問題的能力。
【教學目標】:
1.認知目標
使學生理解圓面積的含義;掌握圓的面積公式,并能運用所學知識解決生活中的簡單問題。
2.過程與方法目標
經歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。
3.情感目標
引導學生進一步體會“轉化”的數學思想,初步了解極限思想;體驗發現新知識的快樂,增強學生的合作交流意識和能力,培養學生學習數學的興趣。
【教學重點】:掌握圓的面積的計算公式,能夠正確地計算圓的面積。
【教學難點】:理解圓的面積計算公式的推導。
【教學準備】:相應;圓的面積演示教具
【教學過程】
一、情境導入
出示場景——《馬兒的困惑》
師:同學們,你們知道馬兒吃草的范圍是一個什么圖形嗎?
生:是一個圓形。
師:那么,要想知道馬兒吃草范圍的大小,就是求圓形的什么呢?
生:圓的面積。
師:今天我們就一起來學習圓的面積。(板書課題:圓的面積)
[設計意圖:通過“馬兒的困惑”這一場景,讓學生自己去發現問題,同時使學生感悟到今天要學習的內容與身邊的生活息息相關、無處不在,同時了解學習任務,激發學生學習的興趣。]
二、探究合作,推導圓面積公式
1.滲透“轉化”的數學思想和方法。
師:關于圓的面積你想了解什么?
。ㄊ裁词菆A的面積?圓的面積怎樣計算呢?計算公式又是什么?計算公式怎樣推導?……)
我們先來回憶一下平行四邊形的面積是怎樣推導出來?
生:沿著平行四邊形的高切割成兩部分,把這兩部分拼成長方形師:哦,請看是這樣嗎?(教師演示)。
生:是的,平行四邊形的底等于長方形的長,平行四邊形的高等于長方形的寬,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高。
師:同學們對原來的知識掌握得非常好。剛才我們是把一個圖形先切,然后拼,就轉化成別的圖形。這樣有什么好處呢?
生:這樣就把一個不懂的問題轉化成我們可以解決的問題。
師:對,這是我們在學習數學的過程當中的一種很好的方法。今天,我們就用這種方法把圓轉化成已學過的圖形。
師:那圓能轉化成我們學過的什么圖形?你們想知道嗎?(想)
2.演示揭疑。
師:(邊說明邊演示)把這個圓平均分成4、8、16份,沿著直徑來切,變成兩個半圓,拼成一個近似的平行四邊形。
師:如果老師把這個圓平均分成32份,那又會拼成一個什么圖形?我們一起來看一看(師演示)。
師:大家想象一下,如果老師再繼續分下去,分的份數越多,每一份就會越小,拼成的圖形就會越接近于什么圖形?(長方形)
[設計意圖:通過這一環節,滲透一種重要的數學思想,那就是轉化的思想,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊知識解決新的問題。并借助電腦的演示,生動形象地展示了化曲為直的剪拼過程。]
3.學生合作探究,推導公式。
。1)討論探究,出示提示語。
師:下面請同學們看老師給的三個問題,請你們四人一組,拿出課前準備的學具拼一拼,觀察、討論完成這三個問題:
①轉化的過程中它們的(形狀)發生了變化,但是它們的(面積)不變?
②轉化后長方形的長相當于圓的(周長的一半),寬相當于圓的(半徑)?
③你能從計算長方形的面積推導出計算圓的面積的'公式嗎?嘗試用“因為……所以……”類似的關聯詞語。
師:你們明白要求了嗎?(明白)好,開始吧。
學生匯報結果,師隨機板書。
同學們經過觀察,討論,尋找出圓的面積計算公式,真了不起。
(2)師:如果圓的半徑用r表示,那么圓周長的一半用字母怎么表示?
。3)揭示字母公式。
師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2
(4)齊讀公式,強調r2=r×r(表示兩個r相乘)。
從公式上看,計算圓的面積必須知道什么條件?在計算過程中應先算什么?
[設計意圖:通過小組合作、討論使學生進一步明確拼成的長方形與圓之間的對應關系,有效地突破了本課的難點。]
三、運用公式,解決問題
1.同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?
。ㄔ俅纬鍪九3圆輬D)
師:這匹馬最多能吃多大面積的草,現在會求了嗎?
教師應加強巡視,發現問題及時指導,并提醒學生注意公式、單位使用是否正確。
2.教學例1。
如果我們知道一個圓形草坪的直徑是20,每平方米草皮8元,鋪滿草坪需要多少錢?
要求鋪滿草坪需要多少錢,要先求什么呢?(先要求出圓形草坪的面積是多少平方米。)
我們該怎樣求它的面積呢?請大家動筆算一算這個圓形草坪的面積吧!
師:在日常生活中,經常會遇到與圓面積計算有關的實際問題。
。ǔ鍪镜谌})
3.小剛量得一棵樹干的周長是125.6c。這棵樹干的橫截面的面積是多少?
分析題意后學生獨立完成(組織交流,評價反饋)
同學們真棒,解決完上面的三個問題后敢不敢來挑戰下面的問題?
4.已知半圓中三角形ABC的高是5厘米,面積是30平方厘米,半圓的直徑是多少?求陰影部分面積。
[設計意圖:學生已經掌握了圓面積的計算公式,可大膽放手讓學生嘗試解答,從而促進了理論與實踐的結合,培養了學生靈活運用所學知識解決實際問題的能力。]
四、全課小結、回顧反思
師:你們對于圓面積的疑問現在解開了嗎?通過這節課的學習,你有什么收獲?
知道哪些條件就可求圓的面積?
(知道半徑、直徑或是周長)
知道半徑:S=πr2
知道直徑:S=π(d÷2)2
知道周長:S=π(C÷π÷2)2
師:同學們,猜想驗證、操作發現是我們在數學學習中探索未知領域時經常要用到的方法,用好它相信同學們會有更多的發現!
【設計意圖:全課總結不僅要重視學習結果的回顧再現,也要關注學習經驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法!
五、課后延伸
圓除了轉化為長方形,還能轉化為什么圖形呢?
板書設計:
長方形的面積 = 長 × 寬
圓的面積 =圓周長的一半 × 半徑
S = πr × r
= πr2
圓的面積教學設計4
一、激趣導入
1、課件出示牧羊圖,讓學生欣賞,并找一找你認識的平面圖形。圖畫內容:把一只羊用一根2米長的繩子拴在樹樁上吃草。
2、談話:同學們,羊能夠吃草的最大范圍是什么形狀?羊能夠吃到多大面積的草呢?你們想知道嗎?今天這堂課我們就一起來學習“圓的面積”這一知識,相信上完這一課,大家一定能夠解決這個問題。[板書:圓的面積
3、看到這個課題,你想知道些什么?
。◣椭鷮W生明確這節課的`學習目標:(1)了解什么是圓的面積;(2)了解與哪些因素有關;(3)知道圓面積公式的推導過程,掌握圓面積的計算公式,會計算圓的面積。)
二、實踐導學
。ㄒ唬┱J識圓的面積
1、什么叫圓的面積。
2、小組討論
3、圓的大小主要與哪些因素有關?((1)半徑;(2)直徑;(3)周長。)
(二)回憶平行四邊形面積公式推導過程
1、指名分別說出平行四邊形面積公式推導過程。(然后課件展示)
2、談話:我們能不能也象求平行四邊形面積公式一樣將圓轉化成已學過的圖形來求面積呢?
3、小組討論
(三)操作探究
1、轉化圓形推導公式
。1)、讓學生拿出卡紙(1),觀察卡紙(1)上的圓被等分成多少分,圓被轉化成什么圖形?
。2)、讓學生拿出卡紙(2),觀察卡紙(2)上的圓被等分成多少分,圓又被轉化成什么圖形?
。3)、教師課件展示圓被平均分成16等份后轉化的圖形。
(4)、觀察比較,你有什么發現?
2、引導學生觀察比較,推導圓面積計算公式。
⑴、將圓通過剪拼,可以轉化成已經學過的什么圖形?
、、新的圖形與原來的圓有什么聯系?
⑶、試推導圓的面積公式。(課件展示)
長方形的面積=長×寬
圓的面積=c÷2×r=2πr÷2×r=πr2
s=πr2
三、練習鞏固
1、運用公式學習例1、
學生試做,說根據,總結強調。
2、完成基本練習(做一做)
四、拓展提高
1、解決“小羊吃草”問題
圓的面積教學設計5
教學目標:
1. 知識與技能:認識圓的面積,通過操作,引導學生探索推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2. 過程與方法:在探究圓面積計算公式的過程中,通過大膽猜想、動手操作等活動,激發學生參與整個課堂教學活動的學習興趣, 培養學生的合作意識和探究精神;通過學生討論交流,培養學生的分析、觀察和概括能力,進一步體會轉化的數學思想和方法,培養學生的遷移能力,發展學生的空間觀念。
3. 情感態度與價值觀:通過應用,讓學生體會數學的應用價值,體驗數學與生活的密切聯系,滲透轉化的數學思想和極限思想。
教學重點:推導圓面積計算公式,運用圓面積計算公式解決實際問題。
教學難點:理解圓的面積公式的推導過程。
教學準備:課件、圓形白紙、剪刀。
教學過程
一、創設情景,引入新課
1、出示主題情景圖:
、購膱D中你獲得哪些數學信息?
②提問:“這個圓形草坪的占地面積是多少平方米?” “占地面積”指什么?
2、說一說:什么叫圓的面積?
3、揭示課題:今天我們就來研究圓的面積。(板書課題:圓的面積)
【設計意圖】:出示情境圖,把教學內容與生活有機結合起來,使學生從具體問題情境中抽象出數學問題,提高學生學習的積極性。
二、合作交流,探索新知
1、回顧舊知:
回顧以前學過的平面圖形面積公式是如何推導出來的?
指出:轉化的方法是我們學習數學新知識的一種很好而且很有用的思想和方法。轉化的目的是為了——將沒學過的圖形轉化成已學過的圖形。
【設計意圖】:通過知識回顧,激發學生學習的求知欲,強化數學學習的生活化。
2、思考:那么能不能把圓也轉化成已學過的圖形來計算它的面積呢?
3、合作探究:
。1)猜想
。2)動手操作,驗證猜想。
(3)匯報交流,展示成果(分層展示學生研究成果)。
【設計意圖】:通過活動,調動學生動手、動腦等多種感知覺參與活動,調動學生積極性、自覺性,培養學生觀察,比較和判斷思維的能力,培養學生合作交流的意識,應用知識間的轉化和聯系,進一步體會轉化的數學思想和方法,培養學生的遷移能力,發展學生的空間觀念。
4、借助網絡畫板制作的動態課件展示圓面積的推導過程。
三、展示不同的`等份數拼成不同的平行四邊形,感受極限的思想。
【設計意圖】:通過對圓切拼的動畫演示,觀察不同等份數拼成的不同圖形,發現規律,讓學生感受極限思想。
5、推導圓面積公式。
、俦容^轉化后的圖形與圓,你發現了什么?
、谌嘟涣,根據學生敘述板書:
長方形面積= 長 × 寬
圓的面積 =圓周長的一半 × 半徑
=Лr × r
=Лr
6、小結:圓的面積計算公式: S =Лr
【設計意圖】:通過轉化和對比,讓學生參與獲取知識的過程,在開放的學習氛圍中積極主動地投入到觀察、討論的學習交流,從而把發現知識的過程交給學生,動靜結合的呈現方式有利于學生的理解,有利于突破教學難點,對學生空間觀念的形成起到了十分重要的作業,有利于發展學生的空間想象能力。
7、知識應用、內化提高
(1)、 求下列圓的面積。(只列式不計算)
r=3cm
。2)、出示例1:例1:圓形花壇的直徑是20m,它的面積是多少平方米?
。1) 認真讀題,理解題意。
。2) 你認為怎樣解決這個問題?
。3) 學生嘗試獨立計算。
(4) 匯報解答過程及結果,集體評價。
【設計意圖】:讓學生運用新知識解決生活中的實際問題,體驗成功的喜悅。
四.聯系生活、拓展延伸
1、公園草地上一個自動旋轉噴灌裝置的射程是10米,它能澆灌的面積是多少?
2、把一個周長為18.84cm的長方形改圍成一個圓,圍成圓的面積是多少?
3、求下列圓的周長和面積。
r=2cm
4、求半圓的面積。
r=4cm
【設計意圖】:拓展延伸,讓學生體會到生活中處處有數學,真正體會數學的實用性。
5、回顧整理,全課總結
今天我們學到了哪些新知識?你有哪些收獲?
【設計意圖】:引導學生回顧學習過程,培養反思習慣,重視學生數學思想、方法的培養。
【圓的面積教學設計】相關文章:
《圓的面積》教學設計02-07
圓的面積教學設計04-03
圓的面積教學設計11-15
《圓的面積》教學設計04-22
《圓的面積》教學設計03-09
圓的面積教學設計12-25
《圓的面積》教學設計優秀05-19
《圓的面積》教學設計優秀02-13
圓的面積教學設計優秀02-24
小學《圓的面積》教學設計04-19