五年級上冊《方程的意義》教學設計(精選10篇)
作為一名無私奉獻的老師,時常要開展教學設計的準備工作,教學設計是對學業業績問題的解決措施進行策劃的過程。那么你有了解過教學設計嗎?以下是小編為大家收集的五年級上冊《方程的意義》教學設計,歡迎大家分享。
五年級上冊《方程的意義》教學設計 篇1
《方程的意義》一課是人教版小學數學五年級上冊第四單元第二節的內容。學生在《方程的意義》之前,在一、二年級的數學學習中均有填算式中的括號,也就是未知數,對于方程的意義有了一定的知識滲透,在本單元中,學生已經學習了用字母表示數,表示數量,表示數量間的關系,都與本節課有著密切的關系。而方程這部分知識,在初等代數中占有重要的地位,對于小學生來說,從具體事物的個數抽象出數是認識上的一個飛躍和,現在由具體的、確定的數過渡到用字母表示抽象的、可變的數,更是認識上的一個飛躍。
而且在用字母表示未知數的基礎上,使學生解決實際問題的數學工具,從列出算式發展到列出方程解,這又是數學思想方法認識上的一次飛躍,它將使學生運用數學知識解決實際問題能力提高到一個新的水平。方程這部分的學習,能使學生擺脫算術思維方法中的某些局限性,為進一步學習代數知識幫好認識的準備和鋪墊。學生從算術方法解決問題到代數方法解決問題的過渡,這節課的概念學習也是后面學習解方程的方法、用方程解決問題的基礎,因此,在教學中起著承上啟下的作用。
根據學生的已有知識,以及《方程的意義》的教學內容,我確立了如下的教學目標:
1、了解方程的意義,弄清方程與等式的聯系與區別。
2、在自主探究的學習過程中,結合教學內容幫助學生建立分類思想,進一步感受數學與生活之間的密切聯系。
3、培養學生的動手操作能力、抽象概括能力,以及在合作學習中的的合作探究能力。
教學重點是在實踐中了解方程的意義,并能根據方程的意義判斷出方程,根據數量關系列出正確的方程。
下面我就將本節課的教學過程及設計意圖向大家做以匯報。
一、談話導入:
同學們,你們小時候玩兒過蹺蹺板嗎?(同時出示圖片)
對于這個游戲的玩兒法與經驗,誰能向大家介紹一下?
其實在生活中,還有一樣物品與蹺蹺板長得很像,它可不是用來游戲的,而是用來測量的。你們認識它嗎?(出示天平)
【蹺蹺板與天平有許多相似之處,它們都是在中間有一個支點,都靠力臂兩端的重量來達到平衡,都是根據杠桿的工作原理。但是對于學生而言,天平比較陌生,而蹺蹺板與學生的生活密切相關,因此,以此導入,能引起同學們的興趣,學生回顧玩兒蹺蹺板的經驗,利用已有的生活經驗去為認識新事物奠定基礎,形成表象】
二、認識并使用天平
教師介紹天平:
這就是一臺托盤天平,它是用來測量比較輕的物體的儀器。這兩個是天平的托盤,一邊放物品,另一邊放測量物體的砝碼,砝碼上都有質量標志。我們通過不斷調試砝碼,直到中間的指針指向中間為兩邊平衡,物體的質量就是砝碼質量之和。
教師示范:
下面我們就一起來進行實際應用天平來測量一下。
首先我們來應用一下,檢查一下砝碼的質量是否準確。
在天平的左邊放置20克和30克的砝碼各一個,右邊我們應該放置一個50克的砝碼。看一下,天平中間的指針正好指向刻度盤的中心,說明天平保持平衡了。
看到天平,你會用等式表示天平兩邊物體的質量關系嗎?
20+30=50
這有一個空的水杯,我們先來測量一下它的重量。
請你估計一下它的重量。我們來試一試。
通過測量,我們得知,水杯的重量是100克。
現在我們緩緩向水杯里倒水,你發現天平怎么樣了?
你知道我倒了多少水嗎?水的質量是未知的,我們可以用字母x表示,那么現在天平的狀態還能用等式來表示了嗎?
100+X>100
我們繼續測量水的質量,同理得出:
100+X>200
100+X<300
100+X=250
這幾個算式都以板書形式呈現。
【在利用天平寫出算式的過程中,我最開始設計的是給每個小組一臺天平,讓學生實際操作,測量物品的質量,但在實際教學中,發現天平中砝碼過小,學生操作起來不方便,而且大部分時間都花費在調節砝碼的過程中,而不是討論方程的意義,與本節課的重難點相背離,因此在修改中,我們還是尊重了教材,以教師的示范為主,我們吸取了學生試驗的教訓,為了讓學生看得真切,我們放棄了實物操作,選擇了電腦課件的演示。】
三、認識方程
1、根據天平寫算式并分類
剛才我們測量了水的質量,在測量過程中,我們出現了這幾種情況,可以用不同的算式表示天平左右兩邊的位置關系,你明白了嗎?下面老師這兒就有幾組天平測量的過程,首先請你根據天平寫出算式。然后把這些算式按一定的原則分分類,最后在小組內交流一下你們的結果。
【《2011年版數學課程標準》中將學生的“雙基”增加為“四基”,其中“領悟數學基本思想”是新增加的內容。數學思想是數學知識和方法在更高層次上的抽象與概括,如抽象、分類、歸納、演繹、模型等。在傳統教學中,我們比較提倡對概念的演繹,清楚地記得,十年前數學書對方程概念的呈現是這樣的:通過天平保持平衡寫出等式,然后得到結論。舊的數學課強調的是對概念的理解和應用,而新的課程標準中提倡要在數學學習中,使學生領悟數學的基本思想,積累數學的基本活動經驗。因此,新的教材中增加了不等式,增加了不含未知數的算式,通過通過類比、分析、歸納,形成數學模型,在頭腦中形成表象,再用嚴謹的語言來表述。
在本節課的設計中,我利用天平這一實物圖,將數學知識置于情境之中,讓學生參與到數學活動中,寫出等式及不等式,含有未知數的和不含未知數的,。學生通過分類對比,形成表象,教師引出概念,使學生親歷知識的生成過程。】
2、交流匯報:
學生邊說,教師邊板書:
等式不等式
含有未知數3x=18050+2x>180
100+x=50x380<2x
不含未知數50x2=100100+20<100+30
根據板書,教師講解:像3x=180、100+x=50x3這樣的含有未知數的等式叫做方程,這就是我們今天所要學習的內容。板書課題。
反問:什么樣的算式叫方程呢?一個算式要成為方程有哪幾個條件?
【通過對比,學生能在腦海中形成一個清晰的方程表象,建立方程的模型,因此在教師講授概念時,學生很容易地就接受了。教師是學習的組織者、引導者和合作者,但并不意味著教師可以什么都不講,對于方程這個新知識,如果老師不告訴學生,學生是不能憑借舊知自己總結出來的,因此在概念的呈現上,我選擇了講授法。】
四、應用概念
同學們,根據你對方程的理解,你能自己寫出幾個方程嗎?
判斷,他們寫得都對嗎?
黑板上剛才我們寫得這些算式,有方程嗎?
【通過前面學生的活動歸納出概念,還要對概念進行演繹。練習題中,我先讓學生自主寫方程,就是考查學生對方程概念的理解,然后再進行判斷的基本練習。】
五、方程產生的文化背景
早在三千六百多年前,埃及人就會用方程解決數學問題了。在我國古代,大約兩千年前成書的《九章算術》中,就記載了用一組方程解決實際問題的資料。一直到三百年前,法國的數學家笛卡兒第一個提出用x、y、z等字母代表未知數,才形成了現在的方程。
【數學是人類文化的重要組成部分,任何一個數學知識的形成都凝聚著人類智慧與汗水。因此學生在學習前人給我們帶來的經驗同時,也要了解數學文化。通過這部分知識的講解,學生對方程的產生有了初步的印象。】
六、拓展延伸
在拓展延伸中,我設計了這樣幾個題目:
1、根據線段圖寫方程
2、根據數量關系寫方程
3、判斷是否是方程
4、方程與等式的關系
七、作業:
利用課余小組時間用天平測量物體的重量。
再想,天平兩邊可以如何添加,能使天平繼續保持平衡呢?
【課堂上的時間是有限的,雖然在前面的教學中,學生沒有使用天平,但對天平都充滿了好奇,因此,我把用天平測量物品的質量這個環節延伸到課下,學生不僅滿足了自己的愿望,而且也是對本節課知識的鞏固,我還設計了“天平兩邊可以如何添加,能使天平繼續保持平衡呢?”發散學生的思維,也為下節課《天平保持平衡的性質》奠定了基礎。】
五年級上冊《方程的意義》教學設計 篇2
教學內容:
人教版小學數學教材五年級上冊第62~63頁及練習十四第1~3題。
教學目標:
1、借助天平及式子的分類操作,使學生初步了解方程的意義;能從形式上判別一個式子是否是方程;理清方程與等式的關系。
2、能根據簡單的線段圖、情境圖列出方程,并能在教師引導下找到等量關系,經歷利用等量關系進行方程模型建構的過程。
3、在對式子的分類、整理的教學活動中培養學生觀察、描述、分類、抽象、概括及應用等能力。
教學重點:
抓住“等式”“含有未知數”兩個關鍵詞初步建立方程的概念。
教學難點:
方程與等式的關系;方程中等量關系的建立。
教學準備:
課件、寫式子的卡片、磁釘。
教學過程:
一、認識天平,談話鋪墊
教師(出示天平圖):這是什么?同學們知道天平的用途嗎?
一般在稱東西時,我們在天平的左邊放上要稱的東西,右邊放上砝碼。如果天平左右兩邊達到平衡,左邊東西的質量就等于右邊砝碼的質量。這種平衡的狀態如果用一個數學符號來表達,就是──等號。
二、探究新知
(一)天平演示,初步感知等與不等。
1、出示天平圖1。
現在這種狀態,你能用一個式子來表示嗎?(板書:50+50=100)
2、(出示天平圖2和圖3)天平向左傾斜表示什么?如果水的質量用
g表示,那么杯子和水共重多少呢?(100+)
3、如果老師在天平右邊再加一個100g的砝碼,可能會出現什么樣的情況?用式子來表示。
這三個式子體現在天平上分別是什么樣的情況?我們用手勢來表示一下。
4、來看看究竟是哪種情況?(先出示天平圖4,后出示天平圖5)用式子來表示一下。
5、(出示教材第63頁最上面的圖)這樣的圖你能用一個式子表示它們的關系嗎?
【設計意圖】通過直觀演示,感受等與不等。同時通過反饋和追問,幫助學生感受等式的意義。為下一環節中式子的分類及理解等式和不等式做好準備。從天平到式,再從式到天平圖,在學生的頭腦中利用天平建立左右相等的等式模型,為突破建立方程中的等量關系這一難點做好鋪墊。
(二)分類整理,建構概念
1、觀察黑板上出現的式子,嘗試根據式子的特點進行分類(先請學生獨立思考,再同桌進行交流。)
2、學生反饋,教師根據反饋在黑板上移動式子。
預設1:按左右相等和不等分類(補充等式和不等式);
預設2:按是否含有未知數分類。
3、(指表格)像這樣,含有未知數的等式稱為方程(揭題)。
4、寫方程:根據你的理解寫2~3個方程,寫完之后給同桌看看其是否為方程(教師在巡視過程中選擇一些學生到黑板上寫一寫。)
5、說說黑板上同學寫的是否為方程,并說說判斷理由(主要使學生明確,判斷一個式子是不是方程,一看是不是等式,二看有沒有未知數。)
(三)概念辨析,理清等式與方程之間的關系
1、“做一做”第1題:請學生說說哪些式子是方程,并說說為什么(可以選擇其中幾個不是方程的式子,請學生說說怎樣改一下就可以將其變成方程。)
2、這兩個式子是否是方程呢?
反饋分析:
(1)式1:一定是。為什么?
(2)式2:一定是等式,可能是方程。
(3)思考:等式和方程有什么聯系呢?
(4)引導畫集合圖,并引導得出:方程一定是等式,等式不一定是方程。
【設計意圖】方程與等式的關系是本節課的教學難點,教學時,先通過分類整理讓學生對等式與方程的關系產生直觀、正確的感知;然后通過被蘸了墨水的式子的判別,進一步體會兩者的關系;最后,通過韋恩圖幫助學生加以明確。不僅突破了教學的難點,而且滲透了初步的集合思想。
三、實踐反思,鞏固提高
1、“做一做”第2題及練習十四第2題:看圖列出方程。
學生練習并進行反饋。
反饋側重:使學生明確,可以根據量相等來列出方程。
2、練習十四第3題:看情境圖,思考數量關系再列方程。
(1)從圖上你知道了什么?
(2)你能根據你知道的數量關系列出方程嗎?
(3)學生自行根據數量關系列出方程,并進行反饋。
【設計意圖】能用方程表達簡單情境中的數量關系,也是《義務教育數學課程標準(2011年版)》對本內容的要求,為從數量關系到等量關系的轉變做好準備,這對于學生理解和掌握方程的知識至關重要。
四、總結回顧,介紹歷史
1、你對方程印象最深的是什么?(每個同學說一點,后面的同學要和前面同學不一樣。)
2、教師介紹方程的相關知識。(課件出示教材第63頁“你知道嗎?”的內容)
【設計意圖】把數學史融入課堂教學當中,一方面可以拓展學生的視野,讓學生對方程的產生過程產生比較清晰的認識,知道數學是一個動態成長的科學,體會到數學的每一個理論和發展是一個漫長的過程。讓學生在體會數學文化的價值的同時,產生探索的欲望。
五年級上冊《方程的意義》教學設計 篇3
教學目標
1、結合操作活動使學生初步理解方程的意義。
2、會用含有未知數的等式表示等量關系。
3、感受方程與現實生活的密切聯系,體驗數學活動的探索性
教學重點:
結合具體情境理解方程的意義,能用方程表示簡單的等量關系。教學難點:能用方程表示簡單的等量關系。
教學過程
活動一:
談話導入:同學們,你們知道我們國家的國寶是什么嗎?對,大熊貓是我國一級保護動物,更是我國外交活動中表示友好的形象大使。動物園的叔叔正在科學的喂養大熊貓呢!
出示信息窗一,引導學生觀察情境圖,閱讀文字信息。
學生觀察主題圖,認真閱讀信息。
活動二:借助天平理解等式。
分組實驗:
①天平左盤放一個10克的砝碼,右盤放一個20克的砝碼,天平不平衡,可以用式子10<20表示;
②在左盤再放上1個10克的砝碼,天平平衡了,用等式10克+10克=20克表示。
分組實驗:
天平左盤放一個20克的砝碼和一個不知重量的方木塊,右盤放一個50克的砝碼,一成天平平衡,用等式20+=50表示。
小結:等式表示相等的關系。
活動三:概括方程的意義。
師:觀察黑板上的三個式子:+20=70、2=150、3+10=100,你有什么發現?
學生自由談想法??
小結:像+20=70、2=150、3+10=100這樣含有未知數的等式,叫做方程。
活動四:方程與等式的關系
想一想,等式和方程之間有什么關系?
小組討論
小結:方程的范圍比較小,等式的范圍比較大,方程只是等式的一部分。活動七:自主練習
1、判斷哪些式子是方程。
師:你認為一個式子是方程必須具備哪些條件?
小結:同時具備“含有未知數”、“相等的式子”這兩個條件才是方程。學生獨立完成自主練習第1題。(引導學生在判斷對錯的同時,說出判斷的依據。)
2、看圖列方程。完成自主練習第2題。要求學生先找出圖中數量間的相等關系,再獨立列出方程。(集體交流)
3、完成自主練習第3題。(讓學生獨立寫出等量關系式并列出方程,再進行交流。)
活動五:全課總結:
引導學生談談這節課有什么收獲?
學生談收獲,并找出不懂的地方。
五年級上冊《方程的意義》教學設計 篇4
教學內容
方程的意義(人教版義務教育課程標準實驗教材五年級上冊第四單元第二小節解簡易方程的第一課時)
教學理念
新課標要求數學課程的培養目標要面向全體學生,適應學生個性發展的需要,使得人人都獲得良好的數學教育,不同的人在數學上得到不同的發展。讓學生獲得數學活動經驗,培養學生在活動中從數學的角度進行思考,直觀地、合情地獲得一些結果。學會用圖形思考、想象問題,能從“數”與“形”兩個角度認識數學。
教學策略
本節課我根據盲生因視覺障礙,對事物缺少整體感知,不能準確地理解抽象的數學觀念這一特點,我充分利用直觀創設情境,恰當地構造數學問題,將抽象的數學關系具體化,調動學生的直觀思維;讓學生經歷觀察、感知、思考、猜想、驗證、分類比較、歸納概括的過程。通過數形結合的方法實現抽象與具體之間的轉變。
內容分析
方程的意義這部分內容是在學生充分理解了四則運算的意義和會用字母表示數的基礎上進行學習的。由學習用字母表示數到學習方程,從未知數只是結果到未知數參加運算,是學生學習數學方法的一次提升;也是學生又一次接觸初步代數思想,是思維的一次飛躍。代數思維是數學學習的"核心思想",本課教學內容是學生從算術思維到代數思維的過渡。
教學目標
1.根據天平平衡的原理,理解等式。能用方程表示簡單的數量關系,理解方程的意義,滲透符號意識,發展數感。
2.使學生在觀察、感知、思考、猜想、驗證、分類比較、歸納概括的過程中,經歷從現實生活或具體情境中抽象出數學問題,用數學符號建立方程,表示數學問題中的數量關系,培養學生形成方程模型的思想,掌握研究問題的方法。
3.分類分層教學,在學生學習數學知識的同時,體會數學與生活的密切聯系,提高對數學的興趣和應用意識。
教學重點
結合具體情境理解方程的意義,用方程表示簡單的等量關系。
教學難點
從算術思維到代數思維的過渡。
教學準備
玩具天平塑料香蕉小袋子多媒體課件、盲文及低視力卡片
教學過程
一、創設情境,抽象出等量關系
(一)依據天平,理解相等,
1.認識天平
同學們認識天平嗎?知道天平是干什么用的嗎?(稱質量、比較物體的質量)那天平是根據什么來稱量或者比較物體的質量?(平衡)讓學生用玩具天平來感知一下平衡(低視生看,老師協助全盲生用手慢慢向上托,直到手掌觸到物體)
再讓學生用自己的身體仿照小猴子的樣子來演示一下平衡。如果左邊重呢?怎樣演示?右邊重呢?2.理解相等
低視力生看大屏幕,根據自己看到的畫面,幫助全盲生把實物掛起來(天平左面有60克和40克的香蕉,右面有100克的香蕉)
天平此時的狀態怎么樣哪?(低視力生觀察,全盲生感知。)天平平衡說明什么?(左右兩邊質量相等)
能用數學式子表示出來嗎?
預設:40+60=10060+40=100(板書)。
像這樣含有等號的式子我們叫它等式。
3、讓學生再說幾個等式。
(二)依據天平,理解不相等
1、理解不相等
如果把左邊40克的香蕉拿下去了,天平會怎樣?(預設:左邊輕,右邊重。)
此時天平的狀態又怎樣哪?(不平衡。)低視生觀察,全盲生感知。
讓學生用一個數學式子表示。(預設:60<100,100>60。
剛才相等的式子叫等式,這樣不相等的呢?(預設:不等式,或不知道。)
2、讓學生再說幾個不等式。
(三)依據天平,理解含有字母的等式與不等式
1、猜想:如果把一個袋子放到天平的左邊,天平會怎么樣?可能會出現哪些情況?
2、交流。(預設:左邊重,右邊輕;右邊重,左邊輕;一樣重。)
3、驗證:低視力生協助全盲生操作驗證(教師協助)
4、以小組為單位,低視生記錄三種狀態下的數學式子。預設(60+x=100;60+x>100;60+x
(四)依據心中的天平理解等量關系
1、談話:看來這一個小小的天平幫我們記錄了這么多的數學現象,現在我把天平藏起來了(把玩具天平收起來)
還有天平嗎?(預設:沒有。)
你心中的天平還有沒有?(有)
2、出示課件:
3、低視力生看大屏幕,并敘述圖意。
4、思考:用心里的小天平擺放一下:左面放?右面放?此時你的小天平是什么樣的狀態?說明什么?
5、讓學生用數學式子表示出來。(預設:5x=800)并讓學生說一說5x表示的意思。(預設:5x是5個蘋果的質量)
6、說一說:5個蘋果的質量為什么用5x來表示?(預設:因為一個蘋果的質量不知道,可以用x表示,5個蘋果的質量就用5x來表示。)
7、評價:真了不起,會用字母來表示不知道的數量,這個未知的數量也可以參與到我們的運算中來解決問題。
二、引導學生給式子分類,抽象概括出方程的意義
(一)式子分類,揭示方程的意義。
1、一小組為單位,讓學生拿出自己的卡片,給剛才的式子分類。并思考分類標準。
2、學生交流
(二)探討并揭示等式與方程的關系。
1、讓學生試著說一說方程與等式的關系。
2、學生交流
3、教師引導:如果方程是一個大圓,方程應該是什么?(預設:一個小圓,在大圓中)
三、鞏固拓展、應用概念
剛才我們認識了方程,你能判斷什么是方程嗎?
應用概念,判斷方程
判斷下面的式子是否是方程。(提問C類學生)
x+515+5=202x+3>1036-x=9×32.應用概念,解決問題。
(1)課件出示:(提問B類學生)
(2)低視力生看大屏幕,并幫全盲生敘述圖意。
(3)談話:能用方程表示出來嗎?(預設:6a=24.6)
(4)追問:6a表示什么?
(5)課件出示:(提問A、B類學生)
教法同上
(6)課件出示:(提問A類學生)
(7)先讓低視生說說這幅圖的意思?
(預設:1000毫升剛好能倒滿2個大杯子和一個小杯子;2個大杯子和1個小杯子的盛奶量就是1000毫升。)
(8)找等量關系,并列出方程
(9)評價:真棒!用字母表示未知數參與到運算中,找到了圖中的等量關系。
四、回顧反思總結提升這節課你學到了什么?
(結合學生的回答,小結)
五、作業:
(1)練習十一第一題
(2)根據今天學習的知識,編一個關于方程的數學故事
教學內容:蘇教版四年級(第八冊)教學目標:(1)使學生理解方程概念,感受方程思想。(2)經歷從生活情景到方程模型的建構過程。
(3)培養學生觀察、描述、分類、抽象、概括、應用等能力。
五年級上冊《方程的意義》教學設計 篇5
【教材分析】
方程在小學乃至初中整個學習過程中,都具有非常重要的地位。《方程的意義》這一節內容是學習其他方程知識的基礎。本課只要求學生初步理解方程的意義,知道什么是方程,能判別一個式子是不是方程。整個教學過程先通過天平演示引出等式和含有未知數的等式,然后對一些不同的式子通過觀察.比較.分析對其進行分類,最后歸納.概括出方程的意義,培養了學生分析.比較.歸納.概括.創新等能力,為以后學習解方程和列方程解答應用題打下良好的基礎
【教學目標】
1.理解和掌握等式與方程的意義,明確方程與等式的關系。
2.通過自主探究.合作交流激發學生的學習興趣,養成合作意識。
3.感受方程與生活的密切聯系,發展抽象思維能力和符號感。
【教學重點】
理解和掌握方程的意義。
【教學難點】
弄清方程和等式的異同。
【數學思想】
符號化思想,轉化的思想,數形結合的思想。
一.創設情境,引出問題
教師活動
學生活動及達成目標
1.同學們,誰還記得《曹沖稱象》的故事?
2.誰能簡單地說一下曹沖是利用什么原理稱出了大象的重量呢?
3.同學們其實在生活中有很多工具能幫我們測量出相同重量的物體。今天就先來認識其中的一種:天平。
簡單介紹《曹沖稱象的故事》
能說出讓大象和石頭的重量相等,再稱石頭的重量。
達成目標:創設貼近學生實際不僅能集中學生注意力,調動學生的積極性,激發學習興趣,也為下面出示天平做好鋪墊。
二.共同探索,總結方法
教師活動
學生活動及達成目標
1.出示天平:讓學生說一說對天平有哪些了解?
如果學生說得不全教師做補充:使用天平一般是左盤放物體,右盤放砝碼;指針在中間說明天平平衡。
2.合作探究。
(1)在天平的右邊放一個100g的砝碼,怎樣才能讓天平平衡呢?
用算式怎樣表示呢?
讓學生觀察式子,等號左邊與右邊相等,這樣的式子就是一個等式。(板書:等式)
(2)把一個杯子放在天平的左邊,右邊放100g的砝碼,讓學生觀察天平說一說發現了什么。
教師質疑:如果我往杯子里倒些水,觀察天平現在的情況。
師:一杯水的重量是多少,怎樣表示?你有辦法嗎?
追問:如果用未知數x來表示水的重量,那么杯子和水一共有多重,又該怎樣表示呢?
(3)再次讓學生觀察現在的天平(天平右邊放100g砝碼),發現了什么?哪邊重一些呢?你們能用數學算式來表示嗎?
(4)教師在右邊依次加一個100g的砝碼,加兩個100g的砝碼讓學生觀察,并說一說天平的情況,用數學算式怎樣來表示嗎?
教師讓學生繼續操作,怎樣才能使天平平衡呢?
這說明了什么?
(一杯水的重量等于250g)
(5)你們能用數學算式來表示這天平的狀況嗎?
(師板書)
引導學生觀察比較這三個算式有什么不同?
lOO+x>200
lOO+x<300
lOO+x=250
師總結:像這樣兩邊相等的算式我們把它叫做等式。(板書:等式)
(6)讓學生比較50+50=100與lOO+x=250兩個等式,有什么不同?
教師小結:像lOO+x=250這樣的含有未知數的等式,稱為方程。(板書:方程)
(7)引導學生思考歸納小結:
是不是所有的等式都是方程?
是不是所有的方程都是等式?
那么,方程有哪些特點?
(8)讓學生仿照課本情境圖,自己試著寫一些方程。
自由發言,可能會說:天平有兩個托盤,中間有指針;天平一邊放物品一邊放砝碼,物品的重量與砝碼的重量相等;天平可以稱量物體的質量,還可以判斷兩個物體的質量是否相等。
讓學生自主思考.交流操作,得出:在天平的左邊放2個50g的砝碼就可以保持平衡。
用算式表示:50+50=100。
學生認真觀察,然后會發現:現在天平平衡,說明空杯子重100g。
學生看出在空杯里加一杯水后天平不平衡了。
思考得出:一杯水的重量=水的重量十杯子的重量。
學生匯報:lOO+x
學生回答:天平兩邊不平衡,用數學算式來表示lOO+x>100
學生觀察后分組討論:
匯報時用式子表示:
lOO+x>200
lOO+x<300。
這時學生很容易發現這杯水的重量大于200g,小于300g。
引導學生把右邊的砝碼換成250g,使天平左右兩邊平衡。
學生自主思考,再全班交流匯報:lOO+x=250
生觀察后會發現:前面兩個算式兩邊不相等,后面一個算式兩邊是相等的。
達成目標:通過直觀演示活動,在老師引導,學生積極參與討論.交流的過程中得出上面的式子,為下面的分類討論環節做準備,同時培養學生觀察思考.發現問題和解決問題的能力。
學生自主思考,并交流得出:第一個等式沒有未知數x,第二個等式含有未知數x。
不是
是
達成目標:這樣的設計我主要是給學生創造了一個大膽設想,敢于發現,抽象概括的機會,真正體會到自己獲取知識,發現知識的成功樂趣。
三.運用方法,解決問題
教師活動
學生活動及達成目標
完成教材第63頁“做一做”第1題。
完成教材第63頁“做一做”第2題。
讓學生說一說什么樣的式子是方程,再自主判斷,最后集體交流。
先說一說圖意,再寫方程表示數量關系。
達成目標:通過學生自主分類比較,
調動了學生的主動性和能動性,
讓學生自己發現知識的形成過程,
層層遞進,達到理解方程意義和掌握方程判斷方法的目的,同時培養學生對比.概括能力和發散思維。
四.反饋鞏固,分層練習
教師活動
學生活動及達成目標
基礎練習:66頁練習十四第1.2.3題。
拓展練習:見課件
達成目標:孩子大部分應該能發現存在的等量關系,但可能會出現40-28=x這樣的式子,應該規范孩子的寫法。
五.課堂總結,提升認識
教師活動
學生活動及達成目標
這節課你運用了哪些學習方法,你有什么收獲?你對自己這堂課的表現是怎么評價的?
達成目標:方程的特點:是一個等式,且含有未知數。
1.像lOO+x=250這樣含有未知數的等式叫做方程。
2.方程有兩個重要條件:一個是等式,一個是含有未知數。
3.方程一定是等式,等式不一定全都是方程。
五年級上冊《方程的意義》教學設計 篇6
教學目標:
1、經歷從生活情境到方程模型的建構過程。
2、理解方程概念,感受方程思想。
3、通過觀察、描述、分類、抽象、概括、應用的學習活動過程達到學習水平的提高。
教學過程:
一、情境創設,初建相等關系模型。
1、師出示天平圖,
認識嗎?
師:天平可以稱出物體的質量是多少。
2、(媒體出示三幅圖)下面的三幅圖中,哪一幅能稱出兩只蘋果的質量?
(左右傾斜各一幅,平衡的一幅。圖略)
學生會選擇圖3,老師順著學生的思路出示圖3天平平衡圖
圖3為什么能稱出兩只蘋果的質量?
你能用一個式子表示出天平兩邊物體的質量關系么?
100+100=200
圖1和圖2為什么不能稱出兩只蘋果的質量呢?
你也能用一個式子表示出天平兩邊物體的質量關系嗎?
100+100>100、100+100<500
3、三個式子都是表示物體之間質量的關系,數學上把這樣表示兩邊相等的關系的式子叫做等式。
你的小腦袋里有等式嗎?說一個試試。
除了用加法表示的還有不一樣的嗎?(師板書學生說的其它的一些式子)
師:沒想到,同學們對等式是這么的熟悉。
二、借助基礎,拓展等式外延。
1、下面的幾幅圖中,天平兩邊物體的質量關系,哪些可以用等式表示?能表示的試著把它寫下來,不能的思考可以用一個什么樣的式子表示呢?
(書上四幅圖略)
選一個等式說一說它表示什么意思?
天平兩邊物體的質量關系,一種是用語言表達,一種是用數學式子表示,你愿意選擇哪一種?說說你的理由。(突出簡潔、清楚)
2、師:的確,這樣的一些數學式子能清楚、簡潔地表示出天平左、右兩邊物體質量之間的關系。
3、比較:現在寫的這些等式與剛才我們說的那些等式有什么不同嗎?
突出含有未知數的等式
這些含有未知數的等式你見過嗎?
生:沒見過;也可能見過,如:用字母表示數中、求未知數x等。
三、進一步拓寬對等式的理解。
1、順著學生的思路組織教學:李老師就為同學們準備了一些生活中同學們常見的一些現象,仔細看一看,這些生活中的現象之間的關系是不是也能用含有未知數的等式來表示呢?
(師出示四幅生活情境圖)
(1)鉛筆盒與筆記本共20元。
(2)借出的書與剩下的書共150本。
(3)3瓶相同的色拉油,每瓶x元,共8元。
三、明確特征,歸納概念。
其實呀,數學上給這樣一些含有未知數的等式起了個很特別的名字叫方程,這就是我們今天要研究的方程的意義。(板書)
揭示數學上我們把含有未知數的等式叫做方程。
四、深刻領悟,挖掘內涵。
1、黑板上的其它式子為什么不是方程?
2、師:現在同學們知道什么是方程了嗎?下面哪些是等式,哪些是方程?(是等式的男生舉手,是方程的女生舉手)
36-7=29、60+x>70、8+x
6+x=14、7+15=22、5y=40
活動結束了,但思考卻剛剛開始,就等式和方程的關系你現在有什么話想說的嗎?
(在活動中理解等式與方程的關系)
五、實踐應用,拓展外延。
1、你能看圖列出方程嗎?
圖1:天平(2x=500)
圖2:四個物體16.8元
圖3:兩杯水共有450毫升
2、從文字表述中找出方程
(1)小明從家到學校有500米,他每分鐘走50米,走了x分鐘。
(2)張師傅每天做x個零件,用了6天做了780個零件。
(3)王濤放學回家后,去商店買了3本精裝筆記本,每本y元。他付給售貨員阿姨20元,找回2元。
3、李老師頭腦中有一幅圖,我把它用方程表示了出來,猜一猜,老師頭腦中可能會是一幅什么樣的圖?
出示:5x=200(可提示:如天平圖等)
個別交流的基礎上同桌互說。
六、全課總結:學習到現在你有哪些收獲?
從不能用方程表示到能用方程表示圖中的數量關系的一種演變。
圖1:買4個小熊貓玩具,每個x元,120元不夠
圖2:買3個,每個x元,120元還不夠
圖3:買2個,每個x元,120元正好
延伸:使兩只水杯一樣多你能有哪些辦法?用方程表示,你能嗎?
五年級上冊《方程的意義》教學設計 篇7
教學目標
1、知識目標:在自主探究的過程中,理解與掌握方程的意義,弄清方程和等式兩個概念的`關系。
2、能力目標:培養學生認真觀察、思考分析問題的能力。滲透數學來源于實際生活的辯證唯物主義思想。
3、情感目標:通過自主探究,合作交流等教學活動,激發學生興趣,培養合作意識。
教學重點
理解和掌握方程的意義。
教學難點
弄清方程和等式的異同
教具準備
多媒體課件、作業紙
教學設計
一、情景導入
師生談話:同學們,你們玩過蹺蹺板嗎?
(課件出示:在美麗的大森林中,山羊、小猴、小狗、小兔在做游戲)
讓學生猜測如果讓山羊和小猴玩蹺蹺板,會出現什么結果。
(課件演示驗證學生的回答,出現蹺蹺板不平衡的畫面)
提問:怎樣才能讓小動物開心地玩起來呢?
學生:讓小狗、小兔加入到小猴那邊。
(課件演示:蹺蹺板逐漸平衡。并能一上一下動起來。)
教師小結:當兩邊重量差不多時,蹺蹺板基本保持平衡,就能很好地玩游戲了。
[評析]:動物是學生們喜歡的形象,以故事情境導入,創設生動有趣的情景,借助多媒體課件演示的優勢,使學生初步感受平衡與不平衡的現象。從而緊緊抓住學生的“心”。
二、探究新知
師:在我們的數學學習中,還有一種更為科學的平衡工具,猜猜是什么?
1、直觀演示,激發興趣
課件出示一架天平,教師向學生介紹它的工作原理。
讓學生仔細觀察,現在天平處于什么狀態。
提問:能用一個式子表示這種平衡狀態嗎?
根據學生的回答,教師板書:50+50=100
2、繼續實驗,自主發現
1)分小組實驗,讓學生自己動手做一做(每個小組發一些有重量的砝碼和學生自己手中的書本等)
要求:三組設計平衡狀態,三組設計不平衡狀態。并據此列式。
2)學生實驗,教師巡回作指導。
3)學生交流匯報,教師板書:
平衡狀態的:
50+10=60
50=20+書……
不平衡狀態的:
50+30>兩本書
50<三本書……
4)學生動手把不平衡狀態的天平調平衡并列式
50+30=四本書
50+10=三本書
5)師生一起把書用字母代替:
50+10=60,
50=20+X,
50+30>2X,
50<3X
50+30=4X
50+10=3X
3、整理分類,認識方程。
1)學生把上沒面的式子進行分類
2)讓學生明確:像這些含有等號的式子都是等式。(板書:等式,標出大集合圈)
觀察右邊三個等式與左邊一個等式有什么區別?
學生很快明確:右邊的等式里都含有未知數。(在等式前面板書:含有未知數)
教師總結:我們把右邊這三個含有未知數的等式稱為方程。
3)學生齊讀方程的意義,同桌互相說出一個方程。
[評析]:這部分教學設計為學生提供了充分的從事數學活動的機會,讓學生動手去操作,去合作。讓學生通過觀察、思考、嘗試分類、交流,積極主動的參與到數學活動中來,并初步滲透了數學中的集合思想。
三、鞏固拓展
課件出示兩個小動物爭吵的畫面
小狗:我知道了,所有的方程一定是等式。
小兔:不對不對,應該說所有的等式一定都是方程。
判斷誰說的對,并敘述理由。
四、總結
學生閱讀數學小知識“你知道嗎?”
五、作業
練習十一的1題
教學反思
1、利用興趣調動學生的積極性,讓學生主動參與。
生活是興趣的源泉,體驗是主動參與的動力。通過直觀演示、學生實驗,調動了學生的積極性和參與的熱情,每一個學生都積極的加入了學習的熱流中來。教學當中始終注意激發學生的學習興趣,增強學生學習的信心。給學生提供了充分的歸納、類比、猜測、交流、反思的時間和空間,使學生的思維能力得到了進一步的提高。
2、關注情景教學
在本節課中,將枯燥的方程概念融于淺顯生動的情景中。導入利用小動物創設了生動有趣的教學背景,整個教學過程中,學生始終對天平的所有情景保持著濃厚的興趣。通過天平稱重的實驗,讓學生嘗試用數學知識來描述實驗現象,使學生獲得了等式和不等式的知識。
五年級上冊《方程的意義》教學設計 篇8
教學內容:
人教版課標教材小學數學第九冊第四單元第53頁、第54頁“方程的意義”。教學目標:借助生活情境理解方程的意義,能從形式上判斷一個式子是不是方程;經歷從生活情境到方程模型的建構過程,感受方程思想;培養學生觀察、描述、分類、抽象、概括、應用等能力。
教學重點:
準確從生活情境中提煉方程模型,然后用含有未知數的等式來表達,理解方程的意義。
教學難點:
理解方程的意義,即方程兩邊代數式所表達的兩件事情是等價的。
教學過程
1.師:(出示一臺天平)請看,這是一臺天平,在什么情況下天平會保持平衡呢?
教師在天平的一邊放上兩袋100克的食物,另一邊放一個200克的砝碼,這臺天平保持平衡了嗎?
提問:你能用一個式子表示這種平衡嗎?(100+100=200或100×2=100)你怎么想到了用數學符號“=”來表示天平的平衡呢?(引導學生說出:這里的100+100表示的是天平左盤食物的質量,200表示的是天平右盤砝碼的質量,正因為它們的質量相等,天平才會平衡,如果學生說成:食物的質量=砝碼的質量,教師也給予肯定,然后問:現在已經知道這兩袋食物的質量都是100克,砝碼的質量是200克,那么上面的式子可以寫成什么形式?)
2.(出示兩小袋食品)將左盤的食物換成兩袋30克的食物,天平還是平衡的嗎?為什么?你能用一個式子表示這種不平衡嗎?(30+30200)我們班誰喜歡喝牛奶?你喝吧!問:這盒牛奶被喝掉多少克了?再問:這盒牛奶現在的質量可以怎么表示?(275-x)克。
3.再將這盒喝過的牛奶放在天平的左盤,可能會出現什么情況?可以怎么表示?寫一寫!點名匯報,(切忌一問一答!當學生答出一種情況,老師隨機問這種情況表示的是什么情況)
當學生說出275-x>200、275-x=200、275-x200,275-x>200,275-X=200,275-x72,③y+24④5x+32=47,⑤2x+3)=34,⑥6(a+2)=42
(對不是方程的式子,一定要學生從本質上解釋為什么不是方程)
學完方程后。小明又列了兩個式子,卻不小心被墨水給弄臟了,猜猜他原來列的是不是方程?
讓學生明白,不管墨跡處是什么,第一個都是方程,第二個則可能是也可能不是,可小明說,他列的第二個式子也是方程,猜一猜,他列了個什么方程?
4.看來,大家對方程又有了更深刻的認識,其實,早在三千六百多年以前,人們就對方程有了自己的認識你知道嗎?
課件出示(配以錄音):早在三千六百多年前,埃及人就會用方程解決數學問題了,在我國古代,大約兩千年前成書的《九章算術》中,就記載了用一組方程解決實際問題的史料,一直到三百年前,法國的數學家笛卡爾第一個提倡用x、y、z等字母代表未知數,才形成了現在的方程。
很多以前用算術方法解起來很難的問題,用方程能輕而易舉地解出來。
設計意圖:
動態平衡是為了加深對方程本質的理解判斷題中對不是方程的式子的合理解釋,進一步明晰了方程的表現形式有別于其他等式、不等式或代數式,為了讓學生感知方程的多樣性,防止學生把未知數狹隘地理解為一個或者狹隘地理解為z,在這一題里設計了有兩個未知數的,也設計了含有未知數a、y的。
五年級上冊《方程的意義》教學設計 篇9
一,教學內容
"義務教育課程標準實驗教科書數學"五年級上冊p53~54方程的意義
二,教材分析
方程的意義對學生來說是一節全新的概念課,讓學生用一種全新的思維方式去思考問題,拓展了學生思維的空間,是數學思想方法認識上的一次飛躍.方程的意義是學生學了四年的算術知識,及初步接觸了一點代數知識(如用字母表示數)的基礎上進行學習的,同時也是學習"解方程"的基礎,是滲透用方程表示數量關系式的一個突破口,是今后用方程解決實際問題的一塊奠基石.
三,教學目標
根據新課標的要求,結合教材的特點和學生原有的相關認識基礎及生活經驗確定本節課的教學目標:
1,使學生在具體的情境中理解方程的含義,體會等式與方程的關系,并會用方程表示簡單情境中的等量關系.
2,經歷從生活情境到方程模型的構建過程,使學生在觀察,描述,分類,抽象,交流,應用的過程中,感受方程的思想方法及價值,發展抽象思維能力和增強符號感.
3,讓學生在學習中體驗到數學源于生活,充分享受學習數學的樂趣,進一步感受數學與生活之間的密切聯系.
四,教學重點,難點
教學重點:理解方程的含義,以及在具體的情境中建立方程的模型.
教學難點:正確尋找等量關系列方程.
五,教學設想
概念教學本來就比較抽象,而且方程思想作為一種全新的思維方式又有別于學生一貫的算術思路,因此在教學時要重視學生在理解的基礎上感知方程的意義,充分利用學生原有的認識基礎,關注由具體實例到一般意義的抽象概括過程,盡量直觀化,生活化,發揮具體實例對于抽象概括的支撐作用,同時又要及時引導學生超脫實例的具體性,實現必要的抽象概括過程.經歷從具體-----抽象------應用的認知過程.
六,教學準備:
課件,天平,實物若干等
七,教學過程:
課前準備:利用學具(簡易天平)感受天平平衡的原理.
教學過程
學生活動
設計意圖
一,創設情景,建立表象
1.認識天平.
2.同學們通過課前的實際操作你發現要使天平平衡的條件是什么
(天平兩邊所放物體質量相等)
3.用式子表示所觀察到的情景:
情景一:導入等式
(1)天平左邊放一個300克和一個150克的橙子,天平的右邊放一個450克的菠蘿
300+150=450
(2)天平左邊放四盒250克的牛奶,右邊放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:從不平衡到平衡引出不等式與含有未知數的等式
(1)
在杯子里面加入一些水,天平會有什么變化
要使天平平衡,可以怎么做
情景三:看圖列等式
(1)
x+y=250
(2)
536+a=600
直觀認識天平
回憶課前操作實況理解平衡原理
觀察情景圖,先用語言描述天平所處的狀態,再用式子表示
先觀察天平從不平衡到平衡這一組動態的操作,再用語言進行描述進而用數學符號進行概括從中感悟不等式與等式的區別,同時進一步加深對等式的理解
觀察課件顯示的情景圖,小組合作交流用等式表示所看到的天平所處的狀態
數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上.學生通過課前"玩學具"已建立天平平衡的條件是左右兩邊所放物體的質量相等的印象,通過天平的平衡原理引入等式是為下一步認識方程作好必要的鋪墊,同時通過天平的直觀性又進一步讓學生體會等式的含義.
通過學生的觀察以及對情景的描述并用等式表示,直觀具體,生動形象,能充分調動學生的學習積極性和強烈的求知欲望同時又培養學生的語言表達能力及符號感(從具體情境中抽象出數量關系并用符號來表示,理解符號所代表的數量關系).
五年級上冊《方程的意義》教學設計 篇10
教材分析:
方程是含有未知數的等式,因此我設計教學方程的概念是從等式引入的,教材采用連環畫的形式,首先通過天平演示,說明天平平衡的條件是左右兩邊所放物體質量相等。同時得出一只空杯正好100克。然后在杯中倒入水,并設水重x克,讓學生說出能用一個什么樣的式子表示出來,讓學生知道方程源于生活。通過引導學生觀察一組圖形的變化,逐步引出等式,從而由不等到相等,引出含有未知數的等式稱為方程。
在此基礎上,一方面讓學生列舉像方程這樣的式子,并予以區別,強化方程的意義。另一方面通過三位小朋友寫方程,讓學生初步感知方程的多樣性。
“做一做”讓學生判斷哪些是方程,使學生進一步鞏固方程的意義。在這兒,一般只要求學生初步理解方程的意義,所以只要學生知道什么是方程,能判斷就可,不必在概念上過分糾纏,更不必拓展太多,以免加重學生負擔。
“你知道嗎?”的閱讀資料簡要介紹了有關方程的一些史料。讓學生只需感知,不作記憶的要求。
學情分析:
五年級的學生對方程這塊內容是第一次正式接觸,雖然在這學期開始的作業本中有幾次方程的題出現,但對學生來說還是比較陌生的,在他們頭腦中還沒有過方程這樣的表象,所以授新課就要從學生原有的基礎開始,從他們知道的東西,如蹺蹺板到天平,然后再過渡到方程。在教學過程中還要注意把握學生的接受能力,這節課只要學生能理解和判斷,不能過分糾纏概念上問題和其他課外的知識,如果要學生了解太多會加重學生的負擔,反而使學生因難而失去學習的興趣。基礎不太好、理解能力不太強的學生在學習過程中可能會遇到對新的內容不容易接受,特別是概念課,所以讓學生課前預習會對這些學生有一定的幫助。在課堂上多讓學生看形象的事物,從而理解概念,幫助學生更好的學習。
教學目標:
1.通過天平演示,使學生初步理解方程的意義;
2.使學生能夠判斷一個式子是不是方程并能解決簡單的實際問題;
3.培養學生觀察、描述、分類、抽象、概括、應用等能力。
重點難點:
判斷一個式子是不是方程;初步理解方程的意義。
課前準備:
課件、天平、帶有磁鐵的卡紙、彩色記號筆。
教學過程:
一、復習舊知,激趣導入
同學們,我們上節課學了用含有字母的式子表示一些數量關系,現在老師要考考你們,已知我們學校有408位同學,再加上所有老師,你能用一個式子來表示師生一共有多少人嗎?(板書:218+x)。學得真不錯,今天我們要進一步來研究這些含有未知數的式子所隱藏著的數學奧秘,想知道嗎?請你用飽滿的姿態告訴老師!
二、創設情景,導入新課
1.同學們,你們去過公園了嗎?玩過翹翹板了嗎,如果你和爸爸一起玩,會出現什么樣的結果?(翹翹板搖晃不平衡)
師:怎樣才能保持兩邊平衡呢?(讓媽媽也加入)
小結;當兩邊重量差不多的時候,蹺蹺板基本保持平衡,就能很好的玩游戲了。
三、探究新知
1、師:在數學中與翹翹板原理一樣的工具,你知道是什么嗎?(生答:天平)
2、介紹:(出示天平)這就是我們這節課要用到的稱量工具——天平。天平是由天平秤和砝碼組成的。砝碼有不同,越大就越重。把要稱量的物體放在左邊的托盤,右邊的托盤放上相應的砝碼,當天平平衡、指針指在正中央,說明這個物體的重量就是砝碼的重量。
2.課件出示第二幅圖:一個天平左盤上放了一個玻璃杯,右盤上放了100g重的砝碼,正好平衡。
師:請看這幅圖。
思考:看了這幅圖你知道了什么?生答。
師:對,我們找到了這樣一個等量關系,(卡片出示:1個空杯子=100g)
3.課件出示第三幅圖:一個天平左盤上放了一個加約150毫升水(紅色)的玻璃杯,右盤上放了100g重的砝碼,天平左低右高。
師:如果我們在杯中加約150毫升的水呢?為了大家看得更清楚,老師在水中滴幾滴紅墨水。
問:這時發生了什么變化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)
問:如果水重x克,你能用一個式子表示天平兩邊的結果嗎?
生回答后,課件、卡片出示:100+x>100
4.課件出示第四幅圖:一個天平左盤上放了一個加了水的玻璃杯,右盤上加了100g重的砝碼,天平還是左低右高。
師:天平出現了傾斜,因為杯子和水的質量加起來比100克重,要使天平平衡,該怎么做?(增加砝碼)對,要需要增加砝碼的質量。
師:怎么樣?剛才左低右高,現在呢?(生能答:還要加砝碼)那就在加100g重的一個砝碼。(課件演示:右盤上再放100g重的砝碼,天平出現左高右低。)
師:現在什么情況?(生答:左高右低)這種情況你能用式子來表示嗎?可以同桌討論。
學生回答后課件、卡片出示:100+x<300
問:觀察列出的兩個式子,有什么共同的地方?
這個問題可能稍有難度,教師可以引導:當天平兩邊不平衡,一邊比一邊重時,要表示兩邊的關系,我們就可以用這樣的不等式表示。(板書:不等式)
問:能再舉幾個這樣的不等式嗎?
(學生列出不等式,教師選擇兩個寫在卡片上貼于黑板。)
5.課件出示第五幅圖:一個天平左盤上放了一個加了水的玻璃杯,右盤上放了250g重的砝碼,天平平衡。
師:下面老師把其中一個100g重的砝碼換成50g重的砝碼。你再來觀察一下。
(學生看到都說:平衡了)
問:誰來表示這個式子?
學生回答后課件、卡片出示:100+x=250
問:為什么用“=”呢?(平衡就是相等了)
問:哦,那這個式子與剛才兩個不等式比較最大不同是什么?(生能答,不能教師引導:這個式子中間是等號,叫等式。板書:等式)
問:能再舉幾個這樣的等式嗎?
(生舉例,教師選擇三個寫在貼于黑板的卡片上。)
這時黑板上的卡片有:
300+200=500100+x<300
100+x>100100+x=250
80+x>100100+50<300
5×a=40x+200x+x=8
三、探究交流,抽象概括
1.分類、建構概念
讓全班觀察黑板上的8個算式,根據它們的特點,小組討論,試將他它們分類并說明理由。
學生討論。
問:誰來說說你們是按照什么標準分的?
(1)如果學生中有“是否含有未知數”(板書:含有未知數)“是否是等式”(板書:等式)這兩類的重點說,其余的口頭交流。
(2)讓按“是否含有未知數”分的學生把式子分成兩堆。
問:按照不同的標準,有不同的結果。這一種分法,我們得到的這幾個式子是什么式子?(含有未知數)那這幾個呢?(沒有未知數)
問:你能把這一種(指含有未知數)再分成兩類嗎?怎么分?指名板演。
(或者讓按“是否是等式”分的學生把式子分成兩堆。
問:按照不同的標準,有不同的結果。這一種分法,我們得到的這幾個式子是什么式子?(是等式)那這幾個呢?(不是等式)
問:你能把這一種(指是等式)再分成兩類嗎?怎么分?指名板演。
根據學生的思路來講。)
問:你們發現了這一類式子有什么特點?(揭示:含有未知數的等式)
師:像這樣,含有未知數的等式我們把它叫做方程。(板書:像這樣含有未知數的等式,叫做方程。)一起讀一遍。(學生齊讀)這也是我們今天這堂課要學習的內容。(板書課題:方程的意義)
2.理解、鞏固概念
師:自己理解一下方程的概念,方程必須具備哪幾個條件?(未知數和等式)
師:你會自己寫出一些方程嗎?(生答:會。)請四個學生到黑板上板演寫兩個,其他同學在作業紙上寫。
寫好后,請同學們用手勢一起判斷對錯,說說你是怎么判斷的。同桌互改。
小結:判斷一個式子是不是方程,一看是不是等式,二看有沒有未知數。
(出示課件)問:老師這兒也有幾個式子,它們是方程嗎?(用手勢表示,隨機讓學生說說為什么)
6+x=143+x50÷2=25ab=18
6+x>2351÷a=17x+y=18
問:通過這幾道題的練習,你對方程有了哪些新的認識?
(1)未知數不一定用x表示。
(2)未知數不一定只有一個。
四、鞏固提高,形成技能
1.判斷
下邊哪些式子是方程?(課本54頁“做一做”)
35+65=100x-14>72
y+245x+32=47
28<16+146(a+2)=42
2.你知道嗎?
課件動態顯示關于方程的小知識。
你知道嗎?早在三千六百多年前,埃及人就會用方程解決數學問題了。在我國古代,大約兩千年前成書的《九章算術》中,就記載了用一組方程解決實際問題的史料。一直到三百年前,法國數學家笛卡兒第一個提倡用x、y、z等字母代表未知數,才形成了現在的方程。
3.練練思維
孟老師今年的年齡加上7就是30歲,你知道老師今年幾歲了嗎?
某同學今年的年齡的2倍是22歲,他今年幾歲?
4.提高智慧
小剛集郵共360張,小紅集郵共400張,怎么才能使兩人的郵票張數一樣多?
5.數學游戲:小博士用他的手遮住了所寫的內容。他想讓你們猜猜他寫的式子是不是方程。(用多媒體設計出手的形狀蓋在方格上)
(1)□+x>40(不是)
(2)x÷□=80(是)
(3)3×□=24(不一定)
讓學生判斷并說明理由。
(第三題:如果方格中填的是未知數這個式子就是方程,如果填的是8就不是方程,填其它的數就是一個錯誤的算式。)
五、總結提升。
回想一下剛才我們上課開始寫的那個表示我們全校師生總人數的式子,現在老師告訴你一共有432人,你能得到怎樣一個方程并知道老師有多少人嗎?(24人)好聰明!這是我們下節課將要學習的內容,希望同學們也能像今天一樣積極動腦,腳踏實地地走好每一步,去解開更多生活中的未知數,去迎接更多新的挑戰!
【五年級上冊《方程的意義》教學設計】相關文章:
方程的意義教學設計07-06
方程的意義數學教學設計03-17
方程的意義教學設計13篇01-12
小學數學方程的意義教學設計06-12
《方程的意義》教學設計(精選10篇)06-20
方程的意義教學設計(精選14篇)07-08
方程的意義說課稿設計06-11
《方程的意義》教學設計(通用6篇)10-29
數學課件《方程的意義》教學設計02-19