亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初中數學優秀教學設計

時間:2022-07-15 15:26:14 教學設計 我要投稿

初中數學優秀教學設計范文(精選10篇)

  作為一名教職工,就不得不需要編寫教學設計,借助教學設計可使學生在單位時間內能夠學到更多的知識。教學設計應該怎么寫呢?下面是小編為大家整理的初中數學優秀教學設計范文,僅供參考,歡迎大家閱讀。

初中數學優秀教學設計范文(精選10篇)

  初中數學優秀教學設計 篇1

  一、教學目標:

  1、知道一次函數與正比例函數的定義。

  2、理解掌握一次函數的圖象的特征和相關的性質。

  3、弄清一次函數與正比例函數的區別與聯系。

  4、掌握直線的平移法則簡單應用。

  5、能應用本章的基礎知識熟練地解決數學問題。

  二、教學重、難點:

  重點:初步構建比較系統的函數知識體系。

  難點:對直線的平移法則的理解,體會數形結合思想。

  三、教學過程:

  1、一次函數與正比例函數的定義:

  一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。

  正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。

  2、一次函數與正比例函數的區別與聯系:

  (1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。

  (2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

  平行的一條直線。

  基礎訓練:

  1、寫出一個圖象經過點(1,—3)的函數解析式為:

  2、直線y=—2X—2不經過第象限,y隨x的增大而。

  3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:

  4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:

  5、過點(0,2)且與直線y=3x平行的直線是:

  6、若正比例函數y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是:

  7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。

  8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。

  9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。

  (1)求線段AB的長。

  (2)求直線AC的解析式。

  初中數學優秀教學設計 篇2

  一、教學目標:

  1、理解二元一次方程及二元一次方程的解的概念;

  2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;

  3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;

  4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

  二、教學重點、難點:

  重點:二元一次方程的意義及二元一次方程的解的概念。

  難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

  三、教學方法與教學手段:

  通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。

  四、教學過程:

  1、情景導入:

  新聞鏈接:x70歲以上老人可領取生活補助。

  得到方程:80a+150b=902880、

  2、新課教學:

  引導學生觀察方程80a+150b=902880與一元一次方程有異同?

  得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。

  做一做:

  (1)根據題意列出方程:

  ①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;

  ②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:

  (2)課本P80練習2、判定哪些式子是二元一次方程方程。

  合作學習:

  活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。

  問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對未知數的值叫做二元一次方程的一個解。

  并提出注意二元一次方程解的書寫方法。

  3、合作學習:

  給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?

  出示例題:已知二元一次方程x+2y=8。

  (1)用關于y的代數式表示x;

  (2)用關于x的代數式表示y;

  (3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。

  (當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)

  4、課堂練習:

  (1)已知:5xm—2yn=4是二元一次方程,則m+n=;

  (2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;

  5、你能解決嗎?

  小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。

  6、課堂小結:

  (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

  (2)二元一次方程解的不定性和相關性;

  (3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。

  7、布置作業:

  初中數學優秀教學設計 篇3

  教學目標:

  1、了解公式的意義,使學生能用公式解決簡單的實際問題;

  2、初步培養學生觀察、分析及概括的能力;

  3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

  教學建議:

  一、教學重點、難點

  重點:通過具體例子了解公式、應用公式。

  難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

  三、知識結構

  本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1、對于給定的可以直接應用的公式,首先在給出具體例子的'前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

  2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

  3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

  教學設計示例:

  一、教學目標

  (一)知識教學點

  1、使學生能利用公式解決簡單的實際問題。

  2、使學生理解公式與代數式的關系。

  (二)能力訓練點

  1、利用數學公式解決實際問題的能力。

  2、利用已知的公式推導新公式的能力。

  (三)德育滲透點

  數學來源于生產實踐,又反過來服務于生產實踐。

  (四)美育滲透點

  數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。

  二、學法引導

  1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。

  2、學生學法:觀察→分析→推導→計算。

  三、重點、難點、疑點及解決辦法

  1、重點:利用舊公式推導出新的圖形的計算公式。

  2、難點:同重點。

  3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差。

  四、課時安排

  1課時

  五、教具學具準備

  投影儀,自制膠片。

  六、師生互動活動設計

  教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式。

  七、教學步驟

  (一)創設情景,復習引入

  師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。

  在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。

  板書:公式

  師:小學里學過哪些面積公式?

  板書:S=ah

  (出示投影1)。解釋三角形,梯形面積公式

  【教法說明】讓學生感知用割補法求圖形的面積。

  初中數學優秀教學設計 篇4

  一、教學目標

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質和,并能靈活應用;

  4、通過二次根式的計算培養學生的邏輯思維能力;

  5、通過二次根式性質和的介紹滲透對稱性、規律性的數學美。

  二、教學重點和難點

  重點:

  (1)二次根的意義;

  (2)二次根式中字母的取值范圍。

  難點:確定二次根式中字母的取值范圍。

  三、教學方法

  啟發式、講練結合。

  四、教學過程

  (一)復習提問

  1、什么叫平方根、算術平方根?

  2、說出下列各式的意義,并計算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學們討論論應注意的問題,引導學生總結:

  (1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

  例1當a為實數時,下列各式中哪些是二次根式?

  例2x是怎樣的實數時,式子在實數范圍有意義?

  解:略。

  說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。

  例3當字母取何值時,下列各式為二次根式:

  分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

  解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

  (2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當x>0時,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何實數時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

  (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

  初中數學優秀教學設計 篇5

  一、教材分析

  本節課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節多邊形內角和。

  二、教學目標

  1、知識目標:了解多邊形內角和公式。

  2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。

  3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

  4、情感態度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。

  三、教學重、難點

  重點:探索多邊形內角和。

  難點:探索多邊形內角和時,如何把多邊形轉化成三角形。

  四、教學方法:引導發現法、討論法

  五、教具、學具

  教具:多媒體課件

  學具:三角板、量角器

  六、教學媒體:大屏幕、實物投影

  七、教學過程:

  (一)創設情境,設疑激思

  師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?

  活動一:探究四邊形內角和。

  在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。

  方法一:用量角器量出四個角的度數,然后把四個角加起來,發現內角和是360。

  方法二:把兩個三角形紙板拼在一起構成四邊形,發現兩個三角形內角和相加是360。

  接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。

  師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

  活動二:探究五邊形、六邊形、十邊形的內角和。

  學生先獨立思考每個問題再分組討論。

  關注:

  (1)學生能否類比四邊形的方式解決問題得出正確的結論。

  (2)學生能否采用不同的方法。

  學生分組討論后進行交流(五邊形的內角和)

  方法1:把五邊形分成三個三角形,3個180的和是540。

  方法2:從五邊形內部一點出發,把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。

  方法3:從五邊形一邊上任意一點出發把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。

  方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。

  師:你真聰明!做到了學以致用。

  交流后,學生運用幾何畫板演示并驗證得到的方法。

  得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。

  (二)引申思考,培養創新

  師:通過前面的討論,你能知道多邊形內角和嗎?

  活動三:探究任意多邊形的內角和公式。

  思考:

  (1)多邊形內角和與三角形內角和的關系?

  (2)多邊形的邊數與內角和的關系?

  (3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?

  學生結合思考題進行討論,并把討論后的結果進行交流。

  發現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。發現2:多邊形的邊數增加1,內角和增加180。

  發現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。

  得出結論:多邊形內角和公式:(n-2)·180。

  (三)實際應用,優勢互補

  1、口答:(1)七邊形內角和()

  (2)九邊形內角和()

  (3)十邊形內角和()

  2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?

  (2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。

  3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?

  (四)概括存儲

  學生自己歸納總結:

  1、多邊形內角和公式

  2、運用轉化思想解決數學問題

  3、用數形結合的思想解決問題

  (五)作業:練習冊第93頁1、2、3

  八、教學反思:

  1、教的轉變

  本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發現結論后,利用幾何畫板直觀地展示,激發學生自覺探究數學問題,體驗發現的樂趣。

  2、學的轉變

  學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。

  3、課堂氛圍的轉變

  整節課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節課學生與學生,學生與教師之間以“對話”、“討論”為出發點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。

  初中數學優秀教學設計 篇6

  問題描述:

  初中數學教學案例

  初中的,隨便那個年級.2000字.案例和反思

  1個回答分類:數學2014-11-30

  問題解答:

  我來補答

  2.3平行線的性質

  一、教材分析:

  本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.

  二、教學目標:

  知識與技能:掌握平行線的性質,能應用性質解決相關問題.

  數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.

  解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.

  情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.

  三、教學重、難點:

  重點:平行線的性質

  難點:“性質1”的探究過程

  四、教學方法:

  “引導發現法”與“動像探索法”

  五、教具、學具:

  教具:多媒體課件

  學具:三角板、量角器.

  六、教學媒體:大屏幕、實物投影

  七、教學過程:

  (一)創設情境,設疑激思:

  1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

  2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

  學生活動:

  思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

  教師:首先肯定學生的回答,然后提出問題.

  問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?

  引出課題——平行線的性質.

  (二)數形結合,探究性質

  1.畫圖探究,歸納猜想

  任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).

  問題一:指出圖中的同位角,并度量這些角,把結果填入下表:

  第一組

  第二組

  第三組

  第四組

  同位角

  ∠1

  ∠5

  角的度數

  數量關系

  學生活動:畫圖——度量——填表——猜想

  結論:兩直線平行,同位角相等.

  問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?

  學生:探究、討論,最后得出結論:仍然成立.

  2.教師用《幾何畫板》課件驗證猜想

  3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

  (三)引申思考,培養創新

  問題三:請判斷內錯角、同旁內角各有什么關系?

  學生活動:獨立探究——小組討論——成果展示.

  教師活動:引導學生說理.

  因為a‖b因為a‖b

  所以∠1=∠2所以∠1=∠2

  又∠1=∠3又∠1+∠4=180°

  所以∠2=∠3所以∠2+∠4=180°

  語言敘述:

  性質2兩條直線被第三條直線所截,內錯角相等.

  (兩直線平行,內錯角相等)

  性質3兩條直線被第三條直線所截,同旁內角互補.

  (兩直線平行,同旁內角互補)

  (四)實際應用,優勢互補

  1.(搶答)

  (1)如圖,平行線AB、CD被直線AE所截

  ①若∠1=110°,則∠2=°.理由:.

  ②若∠1=110°,則∠3=°.理由:.

  ③若∠1=110°,則∠4=°.理由:.

  (2)如圖,由AB‖CD,可得()

  (A)∠1=∠2(B)∠2=∠3

  (C)∠1=∠4(D)∠3=∠4

  (3)如圖,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=()

  (A)180°(B)270°(C)360°(D)540°

  (4)誰問誰答:如圖,直線a‖b,

  如:∠1=54°時,∠2=.

  學生提問,并找出回答問題的同學.

  2.(討論解答)

  如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,

  ∠B=115°,求梯形另外兩角分別是多少度?

  (五)概括存儲(小結)

  1.平行線的性質1、2、3;

  2.用“運動”的觀點觀察數學問題;

  3.用數形結合的方法來解決問題.

  (六)作業第69頁2、4、7.

  八、教學反思:

  ①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.

  ②學的轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.

  ③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.

  初中數學優秀教學設計 篇7

  一學期的工作結束了,可以說緊張忙碌卻收獲多多。回顧這學期的工作,我教九(4)班的數學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經驗,吸取教訓,使以后的工作能夠有效、有序地進行,現將教學所得總結如下:

  一、在備課方面

  在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數。

  二、在教學過程方面

  在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發現知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律、性質和聯系。”只有充分發揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發展。但還是難免受傳統教學觀念的影響,加之經驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學校“”的教學模式下,才開始進一步嘗試,并在不斷的嘗試中總結經驗。

  三、工作中存在的問題

  1)、教材挖掘不深入。

  2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。

  3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導

  4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。

  四、今后努力的方向

  1)、加強學習,學習新教學模式下新的教學思想。

  2)、熟讀初一到初三的數學教材,深入挖掘教材,進一步把握知識點和考點。

  3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發事件方法。

  4)、加強轉差培優力度。

  5)、加強教學反思,加大教學投入。

  一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業務水平。

  初中數學優秀教學設計 篇8

  教學目標

  1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;

  2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;

  3.通過對用字母表示數的講解,初步培養學生觀察和抽象思維的能力;

  4.通過本節課的教學,使學生深刻體會從特殊到一般的的數學思想方法。

  教學建議

  1.知識結構:本小節先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優越性,進而引出代數式的概念。

  2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:

  (1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優越性.

  (2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.

  等都不是代數式.

  3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規定,以簡明而不引起誤會為出發點。

  如:說出代數式7(a-3)的意義。

  分析7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。

  4.書寫代數式的注意事項:

  (1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.

  如3×a,應寫作3.a或寫作3a,a×b應寫作3.a或寫作ab.帶分數與字母相乘,應把帶分數化成假分數,

  #FormatImgID_0#

  .數字與數字相乘一般仍用“×”號.

  (2)代數式中有除法運算時,一般按照分數的寫法來寫.

  (3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.

  5.對本節例題的分析:

  例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節中專門介紹.

  例2是說出一些比較簡單的代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規定而已.

  6.教法建議

  (1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發學生的學習興趣。在教學中,一定要注意發揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。

  (2)在本節的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。

  (3)條件比較好的學校,老師可選用一些多媒體課件,激發學生的學習興趣,增強學生自主學習的能力。

  (4)老師在講解第一節之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。

  (5)因為是新學期代數的第一節課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。

  7.教學重點、難點:

  重點:用字母表示數的意義

  難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。

  教學設計示例

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?

  (通過啟發、歸納最后師生共同得出用字母表示數的五種運算律)

  (1)加法交換律a+b=b+a;

  (2)乘法交換律a·b=b·a;

  (3)加法結合律(a+b)+c=a+(b+c);

  (4)乘法結合律(ab)c=a(bc);

  (5)乘法分配律a(b+c)=ab+ac

  指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;

  (2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數

  2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?

  3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?

  4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?

  (用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)

  此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節課我們將要學習的內容.

  三、講授新課

  1代數式

  單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義

  2舉例說明

  例1填空:

  (1)每包書有12冊,n包書有__________冊;

  (2)溫度由t℃下降到2℃后是_________℃;

  (3)棱長是a厘米的正方體的體積是_____立方厘米;

  (4)產量由m千克增長10%,就達到_______千克

  (此例題用投影給出,學生口答完成)

  解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

  例2說出下列代數式的意義:

  解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;

  (5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方

  說明:(1)本題應由教師示范來完成;

  (2)對于代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等

  例3用代數式表示:

  (1)m與n的和除以10的商;

  (2)m與5n的差的平方;

  (3)x的2倍與y的和;

  (4)ν的立方與t的3倍的積

  分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面

  四、課堂練習

  1填空:(投影)

  (1)n箱蘋果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;

  (3)底為a,高為h的三角形面積是______;

  (4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____

  2說出下列代數式的意義:(投影)

  3用代數式表示:(投影)

  (1)x與y的和;(2)x的平方與y的立方的差;

  (3)a的60%與b的2倍的和;(4)a除以2的商與b除3的商的和

  五、師生共同小結

  首先,提出如下問題:

  1本節課學習了哪些內容?2用字母表示數的意義是什么?

  3什么叫代數式?

  教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號

  六、作業

  1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長

  2張強比王華大3歲,當張強a歲時,王華的年齡是多少?

  3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?

  4a千克大米的售價是6元,1千克大米售多少元?

  5圓的半徑是R厘米,它的面積是多少?

  6用代數式表示:

  (1)長為a,寬為b米的長方形的周長;

  (2)寬為b米,長是寬的2倍的長方形的周長;

  (3)長是a米,寬是長的1/3的長方形的周長;

  (4)寬為b米,長比寬多2米的長方形的周長

  初中數學優秀教學設計 篇9

  一、素質教育目標

  (一)知識教學點

  1.掌握的三要素,能正確畫出.

  2.能將已知數在上表示出來,能說出上已知點所表示的數.

  (二)能力訓練點

  1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.

  2.對學生滲透數形結合的思想方法.

  (三)德育滲透點

  使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.

  (四)美育滲透點

  通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.

  二、學法引導

  1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法.

  2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.

  三、重點、難點、疑點及解決辦法

  1.重點:正確掌握畫法和用上的點表示有理數.

  2.難點:有理數和上的點的對應關系。

  四、課時安排

  1課時

  五、教具學具準備

  電腦、投影儀、自制膠片.

  六、師生互動活動設計

  師生同步畫,學生概括三要素,師出示投影,生動手動腦練習

  七、教學步驟

  (一)創設情境,引入新課

  師:大家知識溫度計的用途是什么?

  生:溫度計可以測量溫度

  (出示投影1)

  三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

  師:三個溫度計所表示的溫度是多少?

  生:2℃,-5℃,0℃.

  我們能否用類似溫度計的圖形表示有理數呢?

  這種表示數的圖形就是今天我們要學的內容—(板書課題).

  【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發,引出本節課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識.

  (二)探索新知,講授新課

  1.的畫法

  與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:

  第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).

  第二步:規定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).

  第三步:選擇適當的長度為單位長度(相當于溫度計上每1℃占1小格的長度).

  【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.

  讓學生觀察畫好的直線,思考以下問題:

  (出示投影1)

  (1)原點表示什么數?

  (2)原點右方表示什么數?原點左方表示什么數?

  (3)表示+2的點在什么位置?表示-1的點在什么位置?

  (4)原點向右0.5個單位長度的A點表示什么數?原點向左個單位長度的B點表示什么數?

  根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。

  學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。

  初中數學優秀教學設計 篇10

  一、教學目標

  1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;

  2.培養學生觀察能力,提高他們分析問題和解決問題的能力;

  3.使學生初步養成正確思考問題的良好習慣。

  二、教學重點和難點

  一元一次方程解簡單的應用題的方法和步驟。

  三、課堂教學過程設計

  (一)從學生原有的認知結構提出問題

  在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?

  為了回答上述這幾個問題,我們來看下面這個例題。

  例1某數的3倍減2等于某數與4的和,求某數。

  (首先,用算術方法解,由學生回答,教師板書)

  解法1:(4+2)÷(3-1)=3。

  答:某數為3。

  (其次,用代數方法來解,教師引導,學生口述完成)

  解法2:設某數為x,則有3x-2=x+4。

  解之,得x=3。

  答:某數為3。

  縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。

  我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。

  本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。

  (二)師生共同分析、研究一元一次方程解簡單應用題的方法和步驟

  例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?

  師生共同分析:

  1.本題中給出的已知量和未知量各是什么?

  2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)

  3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?

  上述分析過程可列表如下:

  解:設原來有x千克面粉,那么運出了15%x千克,由題意,得x-15%x=42500,

  所以x=50000。

  答:原來有50000千克面粉。

  此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?

  (還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)

  教師應指出:

  (1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;

  (2)例2的解方程過程較為簡捷,同學應注意模仿。

  依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:

  (1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;

  (2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);

  (3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;

  (4)求出所列方程的解;

  (5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。

  例3(投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?

  (仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規范書寫格式。)

  解:設第一小組有x個學生,依題意,得

  3x+9=5x-(5-4),

  解這個方程:2x=10,

  所以x=5。

  其蘋果數為3×5+9=24。

  答:第一小組有5名同學,共摘蘋果24個。

  學生板演后,引導學生探討此題是否可有其他解法,并列出方程。

  (設第一小組共摘了x個蘋果,則依題意,得)

  (三)課堂練習

  1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?

  2.我國城鄉居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。

  3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數。

  (四)師生共同小結

  首先,讓學生回答如下問題:

  1.本節課學習了哪些內容?

  2.列一元一次方程解應用題的方法和步驟是什么?

  3.在運用上述方法和步驟時應注意什么?

  依據學生的回答情況,教師總結如下:

  (1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;

  (2)以上步驟同學應在理解的基礎上記憶。

  (五)作業

  1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?

  2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

  3.某廠去年10月份生產電視機2050臺,這比前年10月產量的2倍還多150臺。這家工廠前年10月生產電視機多少臺?

  4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?

  5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數。

【初中數學優秀教學設計】相關文章:

初中數學教學設計03-03

初中數學的教學設計09-18

初中數學優秀教學設計范文(通用3篇)02-09

初中數學《從梯子的傾斜程度談起》優秀教學設計08-17

初中數學教學設計與反思12-23

初中數學教學設計與反思12-23

《數學與文化》優秀教學設計07-09

初中地理優秀教學設計11-28

初中數學教學設計15篇03-08