《方程的意義》教學設計(通用6篇)
作為一名為他人授業解惑的教育工作者,常常需要準備教學設計,教學設計是實現教學目標的計劃性和決策性活動。那么什么樣的教學設計才是好的呢?以下是小編為大家整理的《方程的意義》教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
《方程的意義》教學設計 篇1
教學內容:
教科書第1頁的例1、例2和試一試,完成練一練和練習一的第1~2題。
教學目標:
理解方程的含義,初步體會等式與方程的聯系與區別,體會方程就是一類特殊的等式。
教學重點:
理解并掌握方程的意義。
教學難點:
會列方程表示數量關系。
教學過程:
一、教學例1
1.出示例1的天平圖,讓學生觀察。
提問:圖中畫的是什么?從圖中能知道些什么?想到什么?
2.引導
(1)讓不熟悉天平不認識天平的學生認識天平,了解天平的作用。
(2)如果學生能主動列出等式,告訴學生:像50+50=100這樣的式子是等式,并讓學生說說這個等式表示的意思;如果學生不能列出等式,則可提出你會用等式表示天平兩邊物體的質量關系嗎?
二、教學例2
1.出示例2的天平圖,引導學生分別用式子表示天平兩邊物體的質量關系。
2.引導:告訴學生這些式子中的x都是未知數;觀察這些式子,說一說寫出的式子中哪些是等式,這些等式都有什么共同的特點。
3.討論和交流:寫出的`式子中,有幾個是等式,有幾個不是,而寫出的等式都含有未知數,在此基礎上,揭示方程的概念。
三、完成練一練
1.下面的式子哪些是等式?哪些是方程?
2.將每個算式中用圖形表示的未知數改寫成字母。
四、鞏固練習
1.完成練習一第1題
先仔細觀察題中的式子,在小組里說說哪些是等式,哪些是方程,再全班交流。要告訴學生,方程中的未知數可以用x表示,也可以用y表示,還可以用其他字母表示,以免學生誤以為方程是含有未知數x的等式。
2.完成練習一第2題
五、小結
今天,我們學習了什么內容?你有哪些收獲?需要提醒同學們注意什么?還有什么問題?
六、作業
完成補充習題
板書設計:
方程的意義
X+50=100
X+X=100
像X+50=150、2X=200這樣含有未知數的等式叫做方程
《方程的意義》教學設計 篇2
教學目標:
1、使學生初步認識方程的意義,知道等式和方程之間的關系,并能進行辨析。
2、使學生會用方程表示簡單情境中的等量關系,培養學生的動手操作能力、觀察能力、分析能力和解決實際問題的能力。
教學重點:方程的意義。
教學難點:正確區分等式和方程這組概念。
教學準備:簡易天平、法碼、水筆、橡皮泥、紙條、白紙、磁鐵。
教學過程:
一、課前談話:
同學們,你們平時喜歡干什么?你們喜歡玩嗎?喜歡的請舉手?
這么多人喜歡玩,老師想問這么多同學中有人玩過玩過蹺蹺板嗎?玩過的請舉手,誰來說說玩蹺蹺板時是怎樣的情景?(學生自由回答)
當兩邊的距離相等,重的一邊會把輕的一邊蹺起來,兩邊的重量相等,蹺蹺板就平衡。
二、新授
1、玩一玩
利用這種現象,科學家們設計出了天平,老師也自己做了一個簡易的天平。我們用它來玩一個類似于蹺蹺板的游戲。好不好?
誰想上來玩?
請你在左邊放一個20克的法碼,右邊放一個50克的法碼,這時天平怎么樣?(右邊的把左邊的蹺起來了),在左邊再放一個20克的法碼,這時天平怎么樣?(右邊的把左邊的蹺起來了,說明右邊的重量比左邊的重),
你能用一個數學式子來表示這時候的現象嗎?(用水筆板書:20+20<50)
再在左邊放一個10克的法碼,這時天平怎么樣?(平衡了)
你能也用一個式子來表示這時候的現象嗎?(板書:20×20+10=50。學生說加法,則說兩個20相加還可用[用水筆板書:]
看來我們還可以用式子來表示天平的平衡情況,你們想不想親自來玩一玩?
老師為你們每一個學習小組也準備了一架簡易天平,還有一些法碼,以及兩塊橡皮泥,大家可以利用這些工具,或者利用你們身邊一些比較輕的物體,如橡皮、小刀等,來玩一玩,然后把你們玩的時候看到的現象用式子表示出來,好不好?
給你們5分鐘的時間,比一比哪個小組又快又好。
哪個小組把自己所寫的式子拿上來展示出來。
(有不一樣的都可以拿上來)
2、分類
你們對這些式子滿意嗎?
大家寫出了這么多的式子,你能把這些式子按照一個統一的標準分類嗎?小組討論怎么分?按照什么樣的標準分?
誰來說說你們是按照什么標準分的?
1、如果學生中有“是否含有未知數”(板書:含有未知數)“是否是等式”(板書:等式)這兩類的指名上黑板分,其余的口頭交流。
2、把學生寫的式子分成兩堆,讓學生分]
師:按照不同的'標準,有不同的結果。這一種分法,我們得到的這幾個式子是什么式子?這一種分法,
師:你能把這一種再分成兩類嗎?怎么分?指名板演。
你們發現了這一類式子有什么特點?(揭示:含有未知數的等式)
象這樣,含有未知數的等式我們把它叫做方程。這也是我們今天這堂課要學習的內容。出示課題。
3、理解概念
練習:你能舉一個方程的例子嗎?學生在本子上寫一個。
回憶一下,我們以前見過方程嗎,在哪見過?(學生展示交流)
4、鞏固概念
老師這兒也有幾個式子,它們是方程嗎?(用手勢表示,隨機讓學生說說為什么)
通過這幾道題的練習,你對方程有了哪些新的認識?
(1)未知數不一定用X表示。
(2)未知數不一定只有一個。
一個方程,必須具備哪些條件?
5、比較辨析
師:含有未知數的等式叫方程,那么方程和等式有什么關系呢?
如果老師說,方程一定是等式。對嗎?(結合板書交流)
等式也一定是方程。(結合板書交流)
也就是說:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式來表示方等式和方程之間的關系嗎?
例如畫圖或者別的方式,小組合作,試一試。(用水筆畫在白紙上,字要寫得大些)
三、鞏固
師:同學們的圖非常形象地表示出了方程和等式之間的關系,
1、這些圖你能用方程來表示嗎?
2、看來同學們對今天學的知識掌握得不錯,用方程還可以表示生活中的一些數量之間的關系?
如:我班一共有多少人,男生有多少人?如果把女生的人數看成X,你會用方程來表示男女生人數與全班人數之間的關系嗎?
師:這里還有一些有關我們學校的信息,誰來讀一讀。
3、新的謝橋中心小學,是蘇州市內占地面積最大的小學之一。建筑面積約25000平方米,3幢教學樓的建筑面積一共約為19500平方米,平均每幢為c平方米,其它建筑面積為m平方米。你能選擇其中一些信息列出方程來嗎?(同桌交流)
四、小結
學了這堂課你有什么想說的嗎?你有什么想對老師說的嗎?
《方程的意義》教學設計 篇3
教學目標:
1、通過學習,使學生理解方程的含義,知道像X+50=150、2X=200這樣含有未知數的等式是方程。
2、培養學生概括、歸納的能力。
教學重點:會根據題意列方程。
教學難點:理解方程的含義。
教學過程:
一、教學例1
出示例1圖,提出要求:你能用等式表示天平兩邊物體的質量關系嗎?
學生在本子上寫。
指名回答,板書:50+50=100
含有等號的式子叫等式,它表示等號兩邊的結果是相等的。
二、教學例2
學生自學
要求:1、學生在書上獨立填寫,用式子表示天平兩邊的質量關系。
2、小組同學交流四道算式,最后達成統一認識:
X+50>100 X+50=100
X+50<100 X+X=100
根據學生的回答,教師板書這4道算式。
3、把這4道算式分成兩類,可以怎樣分,先獨立思考后再小組
內交流,要說出理由。
學生可能會這樣分:
第一種:
X+50>100 X+50=100
X+50<100 X+X=100
第二種:
X+50>100 X+X=100
X+50<100
X+50=100
引導學生理解第一種分法:
你為什么這樣分,說說你的想法。
小結:像右邊的式子就是我們今天所要學習的方程,請同學們在書上找到什么是方程,讀一讀,不理解的和同桌交流。
指名學生說,教師板書:像X+50=150、2X=200這樣含有未知數的等式是方程。
提問:你覺得這句話里哪兩個詞比較重要?“含有未知數”“等式”
那X+50>100 、X+50<100為什么不是方程呢?
提問:那等式和方程有什么關系呢,在小組里交流。
方程一定是等式,但等式不一定是方程。
三、完成“試一試”、“練一練”
學生獨立完成。
集體訂正時圍繞“含有未知數的等式”進一步理解方程的.含義
四、課堂作業:練習一的1、2、3。
板書: 方程的初步認識
X+50=100
X+X=100
像X+50=150、2X=200這樣含有未知數的等式是方程。
《方程的意義》教學設計 篇4
教學目標:
1、認識等式,以具體的實例引導學生通過自主的探索活動,初步理解等式的特征。
2、通過觀察比較,使學生認識到含有未知數的等式是方程,感受等式與方程的聯系與區別,體會方程是特殊的等式。
教學重點:理解等式的性質,理解方程的意義。
教學難點:利用等式性質和方程的意義列出方程。
教學準備:多媒體課件
教學過程:
一、情景引入
1、出示天平。
知道這是什么嗎?你知道它是按照什么原理制造的嗎?
說說你的想法。
如果天平左邊的物體重50克,右邊的放多少克才能保持天平的平衡的呢?
二、教學新課
1、教學例1。
(1)出示例1圖。
你會用等式表示天平兩邊物體的質量關系嗎?把它寫出來。
50+50=100 (板書)
說說你是怎樣想的'?
(2)指出等式的左邊,等式的右邊等概念。
等式有什么特征?(等式的左邊和右邊結果相等;等式用等號連接)
能說說什么樣的式子叫做等式嗎?(左右兩邊相等的式子叫做等式)
2、教學例2。
(1)出示例2圖。
天平往哪一邊下垂說明什么?(哪一邊物體的質量多)
你能用式子表示天平兩邊物體的質量關系嗎?
學生獨立完成填寫,集體匯報。
板書:x+50>100 x+50=150
X+50<200 x+x=200
如果讓你把這四個式子分類,應分為幾類?為什么?
指出:左右兩邊相等的式子就叫做等式,而這些等式與前面所看到的等式又有什么不同?(等式中含有未知數)
知道像x+50=100,x+x=100這樣的等式叫什么嗎?(方程)
說說什么是方程?你覺得這句話里哪兩個詞比較重要?(含有未知數、等式)
(2)討論:等式與方程有什么關系?
小組討論。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他們的關系可以用集合圈表示。
3、教學“試一試”。
獨立完成,完成后匯報方法。
讓學生說一說,每題中的方程哪個更簡潔一些?
指出:像500÷2=x,20-12=x雖然也是方程,但在列方程時應盡量避免這樣x單獨在等號左邊或右邊的方法。
4、完成“練一練。
(1)完成第1題。
獨立完成判斷后說說想法。
(2)完成第2題。
(3)完成第3題。
交流所列方程,說說你為什么這樣列?你是怎么想的?
三、鞏固練習
1、完成練習一第1題。
能說說每個線段表示的意思嗎?方程怎樣列呢?
小組中交流列式。
2、完成練習一第2題。
理解題意,說說數量關系是怎樣的?
列出方程并交流。
3、完成練習一第3題。
四、課堂總結
通過學習,你有哪些收獲?
板書設計:
方程
等式 50+50=100 x+50>100 x+50=150
方程 X+50<200 x+x=200
《方程的意義》教學設計 篇5
教學目標:
知識與技能:使學生通過活動初步理解方程的意義,知道方程與等式的關系,能正確判斷方程。
過程與方法:使學生經歷用方程表示簡單情境中等量關系的過程,積累將現實問題數學化的經驗,感受方程的方法及價值,培養學生的觀察、描述、分類、抽象、概括和應用能力,發展抽象思維能力和符號感。
情感態度與價值觀:讓學生獲得成功的體驗,建立學好數學的信心,激發學習數學的興趣。
教學方法:合作探索,小組交流、觀察、分析、概括等方法
教學過程:
(一)創設情境,激發興趣。
師:同學們,認識它嗎?(出示天平)它是用來干什么的呢?然后說明天平用途和原理。
(二)觀察現象,抽象概括
1.平衡現象數量關系的抽象概括。
師:我這里有2個25克的果凍,把它們放在天平的`左邊,右邊再放一個質量為50克的砝碼,天平怎么樣了?
師:你能用一個數學式子表示你看到的現象嗎?(生:25+25=50或25×2=50。)
師:用這個簡單的式子就能表示天平的這種平衡狀況,那么左邊表示的是什么?右邊表示的又是什么?
2.不平衡到平衡現象數量關系的抽象概括
師:我這里還有一個大果凍,不知道是多少克,可以用什么來表示呢?我們把這個重X克的果凍放在天平的左邊,右邊放一個克的砝碼,這時天平平衡嗎?
師:誰能用一個數學式子來表示現在天平的這種不平衡狀況?(生:X<)師:那我們怎樣才能讓天平平衡呢?(生:往左邊盤中加砝碼)我們往果凍
這邊加150克砝碼,觀察天平平衡了嗎?
師:左邊盤中物體質量的可以怎樣表示?(生:X+150)
師:能用一個數學式子來表示現在天平的這種不平衡狀況?(生:X+150>)
師:剛才往左邊盤中加的物體多了,現在我們拿掉50克,現在天平的左邊怎樣表示呢?
師:誰能用一個數學式子來表示現在天平的這種平衡狀況?(生:X+100=)
3.不確定現象數量關系的抽象概括
師:我這里還有兩瓶礦泉水,紅色的有380克,藍色的有350克,如果將這兩瓶礦泉水放到天平左右兩邊,天平會怎么樣?
師:現在請一位同學將這瓶礦泉水喝掉一些,誰來?(請一位同學喝)
師:這瓶礦泉水被喝掉了多少克?(生:不知道)
師:可用什么來表示喝了的克數?(生:用X來表示喝了的克數,即X克)
師:這瓶礦泉水剩下的質量可以怎樣表示?[生:(380-X)克]
師:如果現在把這兩瓶礦泉分別放在天平的左右兩邊,天平會出現什么狀況?(生:可能平衡,可能左輕右重,可能左重右輕,分別用380-X=350、380-X<350、380-X>350來表示)
(三)觀察分類,抽象概念
1.觀察分類。
師:大屏幕上出現的這些數學式子,你能按照這些數學式子的不同特征分類嗎?請孩子們自己獨立思考,按自己的方式進行分類。(自主學習)
2.展示分類。
①交流分類情況,說明分類理由。
②揭示“等式”與“不等式”的概念
師:像這樣的含有等號的式子,數學上稱之為等式。像這些含有不等號的式子,我們都稱之為不等式。(課件出示相應的分法。)
3.抽象概念
師:請同學們仔細觀察這些等式,它們有什么不同?
師:這些等式中的字母表示“未知數”,像這些“X+100=
含有未知數的等式,稱之為方程。這就是我們今天學習的內容。(板書課題)
師:誰來說說什么是方程?(板書:含有未知數的等式叫方程)
(四)應用新知,加深理解
1.判斷下列式子是不是方程。
2.創作方程。
3.問題質疑,揭示方程與等式的關系。
①含有未知數的式子是方程?
②“方程一定是等式,等也一定是方程?
(五),鞏固練習。
師:說說你這節課有什么收獲,你還想學習有關方程的什么內容。
師:我們一起來應用今天所學的知識吧!
《方程的意義》教學設計 篇6
教學內容:蘇教版四年級(第八冊)
教學目標:
(1)使學生理解方程概念,感受方程思想,方程的意義。
(2)經歷從生活情景到方程模型的建構過程。
(3)培養學生觀察、描述、分類、抽象、概括、應用等能力。
教學過程:
一、創設情景,抽象數學模式。
1.出示實物天平。
(實物天平比較小,用屏幕上的天平來模擬實驗。)
2.兩個大蘋果和一個小西瓜,它們的重量我們還不知道,如果要分別放在兩個盤上,猜猜看,天平可能會哪邊重呢?(說明兩邊的重量可能有三種不同的關系。)
用式子描述重量之間的相等關系。
3.一場籃球比賽,紅、藍兩隊打得還挺激烈的,你能來描述兩隊的情況嗎?
用式子表示兩隊比分的關系。
紅隊的教練啊也關注了這個情況,馬上叫了一次暫停,并作了戰術上的調整,一上場的.一段時間里,只有紅隊連續得了?分,請你猜一猜,兩隊的情況會怎樣呢?
用式子來表示比分的三種關系,小學數學教案《方程的意義》。
4.創設四個情景。
(1)每個情景中數量之間有什么關系?
(2)你能用關系式清晰地來描述嗎?
二、引導分類,概括方程概念。
剛才我們對情景的描述得到了很多式子。
200+200=40018<2318+?<2318+?>2318+?=23
280>100120<4?25+?=7022y+720=1050
1.學生嘗試第一次分類。
可能有幾種不同的分法。
(1)看是否是等式。
(2)看是否含有未知數。
……
2.學生嘗試第二次分類。
得到四組不同的式子。
3.描述每一組的特征。
4.引導概括方程概念。
含有未知數的等式叫方程。
三、抓等量關系,體會方程本質。
1.演示動態平衡。有等量關系,能用方程表示
2.出示情景(沒有等量關系,不能用方程表示。)
出示情景120元正好買2個玩具企鵝。(有等量關系,能用方程表示)
3.通過今天這節課,你學到了什么呢?
四、聯系實際,應用與拓展。
1.周老師從無錫到徐州來上課。
(1)線段圖。
(2)我乘火車從無錫站開出,每小時行?千米,7小時到達徐州站。無錫站到徐州站的鐵路長525千米。
(3)到了徐州站,我買了3枝圓珠筆,每枝?元,付出20元,找回2元。
2.情景圖。
本屆奧運會上,中國臺北隊獲得了?枚金牌,中國隊獲得了32枚,日本隊獲得y枚。男孩說:“中國臺北隊金牌數的16倍正好等于中國隊的金牌數。”女孩說:“日本隊的金牌數等于中國臺北隊的8倍。”
3.開放題。
小芳集郵共260張,小明集郵共300張。怎樣才能使兩人的集郵張數一樣多?(用方程表示)
【《方程的意義》教學設計】相關文章:
方程的意義教學設計12-19
《方程意義》教學設計04-27
方程意義教學設計04-18
方程的意義教學設計02-15
方程意義教學設計04-19
《方程意義》教學設計04-27
方程的意義教學設計通用05-15
方程的意義教學設計集合05-10
方程的意義教學設計15篇02-15
《方程意義》教學設計(通用13篇)08-26