亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

《有理數的加減法》教學設計

時間:2023-02-09 00:06:26 教學設計 我要投稿
  • 相關推薦

《有理數的加減法》教學設計

  有理數的加法與小學的加法大有不同,小學的加法不涉及到符號的問題,下面給大家分享《有理數的加減法》教學設計,一起來看看吧!

《有理數的加減法》教學設計

  《有理數的加減法》教學設計1

  教學目標:

  1、會將有理數的減法運算轉化為有理數的加法運算。

  2、會將有理數的加減混合運算轉化為有理數的加法運算。

  教學重點、難點:

  會進行有理數的減法運算,會進行有理數的加減混合運算。

  課前復習:

  1、有理數加法法則是什么?

  2、有理數加法運算律是什么?

  教學過程:

  一、有理數的減法法則

  實際生活中有很多時候要涉及到有理數的減法。例如:某地某天的氣溫是―2至5C,這一天的溫差是多少呢?(溫差是最高氣溫減最低氣溫,單位:C)。顯然,這天的溫差是5―(―2)。這里就用到了有理數的減法。

  我們知道,減法是與加法相反的運算,計算5―(―2),就是要求一個數,使之與(―2)的和得4,因為與―3相加得4,所以這個數應該是7,即:5―(―2)=7。

  (1)另一方面,我們知道5+(+2)=7

  (2)由(1),(2)有5―(―2)=5+(+2)

  (3)從(3)式能看出減―2相當于加哪個數嗎?

  用上面的方法考慮:

  0―(―2)=___, 0+(+2)=___;

  1―(―2)=___, 1+(+2)=____;

  ―5―(―2)=___, ―5+(+2)=___。

  這些數減3的結果與它們加+2的結果相同嗎?

  從(3)式能看出減―2相當于加哪個數嗎?把5換成0,1,—5,用上面的方法考慮,并看它們的結果相同嗎?

  計算:10-8=___,10+(-8)=____;

  13-7=___,13+(-7)=____。

  上述式子表明:減去一個數,等于加上這個數的相反數。

  于是,得到有理數減法法則:減去一個數,等于加這個數的相反數。

  用式子可以表示成ab=a+(b)

  例題解析:

  計算:

  (1)(-4)―(―5);

  (2)0-6;

  (3)7.1―(―4.9);

  解:(1)(-4)―(―5)=(-4)+5=1;

  (2))0-6=0+(-6)=-6;

  (3)7.1―(―4.9)=7.1+4.9=12;

  二、有理數加減混合運算

  有理數的加減混合運算,可以按照運算順序,從左到右逐一加以計算,通常也會利用有理數的減法法則,把它寫成只有加法運算的和的形式。

  例如:(+2)-(-3)-(+4)+(-5)可以寫成(+2)+(+3)+(-4)+(-5)

  將上面這個式子寫成省略加號和括號的`形式即為:(+2)+(+3)+(-4)+(-5)=2+3-4-5

  對于這個式子,有兩種讀法:①讀作“2加3減4減5”;②讀作“2、3、-4、-5的和”

  例1計算(-20)+(+3)-(-5)-(+7)

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =-20+

  3+5-7

  =-20-7+3+5

  =-27+8

  =-19

  說明:計算時,可以按照運算順序,從左到右逐一加以計算,從以上我們可以得出,引入相反數后,加減混合運算可以統一為加法運算:

  a+b

  c=a+b+(c)

  三、加法運算律在加減混合運算中的作用與方法

  加法運算律在加減混合運算中的運用,可以使一些計算簡便,例如利用加法運算律使符號相同的加數在一起,或使和為整數的加數在一起,或使分母相同或便于通分的加數在一起等等

  例2。用兩種方法計算:-4.4-(-4)-(+2)+(-2)+12.4

  解法1:-4.4-(-4)-(+2)+(-2)+12.4

  =-4.4+4+(-2)+(-2)+12.4

  =(-4.4+12.4)+4+[(-2)+(-2)]

  =8+[4+(-5)]

  =8+(-1)=7

  此解法是將和為整數、便于通分的加數在一起

  解法2:-4.4-(-4)-(+2)+(-2)+12.4

  =-4.4+4-2-2+12.4

  =(8+4-2-2)

  =8+(-1)=7

  此種方法是將整數部分與小數部分分別相加使計算簡化

  四、小結:

  (1)有理數減法法則:減去一個數,等于加這個數的相反數。用式子可以表示成:

  ab=a+(b)

  (2)有理數加減混合運算可以統一為加法運算,即:a+b

  c=a+b+(c)

  (3)有理數加法運算律:

  ①加法交換律:a+b=b+a

  ②加法結合律:(a+b)+c=a+(b+c)

  五、課后作業

  《有理數的加減法》教學設計2

  教學目標:

  【知識與技能】

  掌握有理數的減法法則,能運用有理數的減法法則進行運算。

  【過程與方法】

  經歷由特例歸納出一般規律的過程,培養學生的抽象概括能力及表達能力;通過對有理數減法法則的探討,體驗數學的轉化思想。

  【情感、態度與價值觀】

  在歸納有理數減法法則的過程中,通過討論、交流等方式進行同伴間的合作學習。

  教學重點

  理解有理數減法法則的意義,會運用有理數的減法法則進行運算。

  教學難點

  有理數減法法則的探討。

  教學準備

  多媒體課件

  教學過程

  一、復習回顧

  1.-2的相反數是____,+0.3的相反數____,相反數是它的本身的數是___.

  2.計算

  (1)4+16= (2)(–2)+(–7)=

  (3)(–1)+3.6= (4)2+(–4)=

  (5)(–5)+5= (6)0+(–8)=

  設計意圖:通過復習回顧,熟悉舊知,為學生本節課的學習做好知識準備。

  二、創設情境、引入新課

  北京某天氣溫是-3C~3C,這天的溫差是多少攝氏度呢?

  學生列式表示3-(-3)=?但是不知道結果。

  設計意圖:通過小知識引入問題,然后引出有理數的減法運算,引起學生的探究欲望,激發學生的學習興趣。

  三、探究新知

  同學們都知道,減法和加法互為逆運算,3-(-3)=?也就是問什么數加上—3等于3?

  因為6+(—3)=3 所以3—(—3)=6

  師問:3+?=6 生答:3+3=6

  請同學們觀察以下兩個式子:

  (1)3-(–3)=6;(2)3+3=6

  你發現了什么?換些數試試。(學生自主思考)

  9—8=____, 9+(—8)=____;

  15—7=____, 15+(—7)=____。

  然后比較上面的式子,能發現其中的.規律嗎?分小組討論。

  然后師生共同歸納法則,教師板書法則。并強調減法在運算時有2個要素要發生變化,1個要素不變。(兩變一不變)

  1減 加

  2數 相反數

  設計意圖:通過觀察、交流、討論,歸納發現有理數的減法法則,感受轉化的數學思想。

  練習:下列括號內各應填什么數?

  (1)(—2)—(—3)=(—2)+____;

  (2)0—(—4)=0____4;

  (3)(—6)—3=(—6)+_______;

  (4)1—(+39)=____+(—39)。

  設計意圖:通過學生邊口述,邊解釋法則,學生能找準在將減法變加法的過程中什么變,什么不變。

  四、典例講解

  例4計算:

  (1)(—3)—(—5) (2)0—7

  (3)7.2—(—4.8) (4)

  教師板演示范(1)(4),示范書寫過程,學生完成(2)(3)。

  設計意圖:通過教師的板演,為學生的書寫起示范作用,學生練習暴露出來的問題,教師可以及時發現并指正。

  思考:在小學,只有當a大于或等于b時,我們才會做a-b,現在,當a小于b時,你會做a-b嗎?

  一般地,較小的數減去較大的數,所得的差的符號是什么?

  通過上述例題,學生不難解答。

  五、當堂檢測

  1.計算:

  (1)6-9; (2)(+4)-(-7);

  (3)(-5)-(-8); (4)0-(-5);

  (5)(-2.5)-5。9; (6)1.9-(-0.6)。

  2.計算:

  (1)比2C低8C的溫度;

  (2)比-3C低6C的溫度。

  3計算:|(—3)-5|=____。

  六、小結

  這節課我們學習了哪些知識?你還學到了什么?你能說一說嗎?

  學生自主談收獲,其他同學補充,教師可給與必要總結。

  設計說明:小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主體地位,讓學生自己總結,談收獲,培養學生善于進行學習反思的良好習慣。

  七、作業布置

  必做題:

  習題1.3第3題(1)(2)(5)(9)(10)第4題(1)(5)

  選做題:

  已知a=8,b=—5,c=—6,求(c—a)—|b|的值。

  設計說明:根據課標和本節課的教學目標的要求,學生要會運用有理數的減法法則進行運算。我將作業分成選做和必做兩個層次,這樣盡量能讓每個同學在今天的學習中都有所收獲。

  八、板書設計

  1.3.2有理數的減法

  2.有理數的減法法則 例4計算:

  3.兩個變化要素

  1減 加

  2數 相反數

  4.轉化思想

  設計意圖:本節課的板書我主要采用提綱式的板書,既直觀形象,又能加深理解記憶。

  以上是我對本節課的見解,還請各位老師多多指導。

  《有理數的加減法》教學設計3

  一、教學目標

  【知識與技能】

  掌握有理數加法運算律,理解其在加法運算中的作用。

  【過程與方法】

  經歷探索有理數加法運算律過程,培養觀察思維邏輯推理能力。

  【情感、態度與價值觀】

  問題分析解決過程中,感受數學的魅力。

  二、教學重難點

  【教學重點】

  有理數加法運算律。

  【教學難點】

  靈活應用有理數加法運算律。

  三、教學過程

  (一)導入新課

  復習導入:小學學習過加法運算律,帶領學生回顧加法交換律,加法結合律。

  提問:在引入負數之后,這些運算律還能不能成立?

  板書課題,有理數加法運算律

  (二)生成新知

  學生思考,討論交流,教師展示兩組算式:3+(-5)=-5+3=;

  提問:上述兩個算式相等嗎?如果換成其它有理數相加,兩個算式的結果還相等嗎?

  歸納總結得出,有理數的加法中,交換加數的.位置,和不變。

  加法交換律:a+b=b+a

  展示第二組算式:3+(-5)+7=3+(-5+7)=;

  提問:分析式子意義,計算一下兩個式子結果是否相同,換一些其它有理數試一試?

  歸納總結得出,有理數的加法中,先把前兩個數相加或者先把后兩個數相加,和不變。

  加法結合律:(a+b)+c=a+(b+c);

  思考:多個有理數相加是不是可以交換兩個加數的位置,結合某些加數求和?

  (三)鞏固提高

  計算:

  1.(-11)+25+(-9)=

  2.(-16)+25+(-24)+15=

  總結:多個有理數相加可以任意交換加數的位置,也可以先把其中的幾個數相加,使其計算簡便。

  (四)小結作業

  小結:提問學生本節課有什么收獲,闡述有理數加法運算律。

  作業:課本習題第2題。

【《有理數的加減法》教學設計】相關文章:

有理數教學設計03-18

有理數的乘法教學設計02-23

有理數的乘法教學設計02-26

《有理數的乘方》教學設計02-13

分數的加減法教學設計02-27

《小數的加減法》教學設計07-29

10的加減法教學設計05-15

《小數的加減法》教學設計06-09

《有理數》的教學設計(通用10篇)09-26

有理數的乘法教學設計(精選15篇)09-01