亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

《垂直于弦的直徑》的課程教學設計

時間:2021-06-17 15:56:51 教學設計 我要投稿

《垂直于弦的直徑》的課程教學設計

  第一課時 (一)

《垂直于弦的直徑》的課程教學設計

  教學目標 :

  (1)理解圓的軸對稱性及垂徑定理的推證過程;能初步應用垂徑定理進行計算和證明;

  (2)進一步培養學生觀察問題、分析問題和解決問題的能力;

  (3)通過圓的對稱性,培養學生對數學的審美觀,并激發學生對數學的熱愛。

  教學重點、難點:

  重點:

  ①垂徑定理及應用;

  ②從感性到理性的學習能力。

  難點:垂徑定理的證明。

  教學學習活動設計:

  (一)實驗活動,提出問題:

  1、實驗:讓學生用自己的方法探究圓的對稱性,教師引導學生努力發現:圓具有軸對稱、中心對稱、旋轉不變性。

  2、提出問題:老師引導學生觀察、分析、發現和提出問題。

  通過演示實驗觀察感性理性引出垂徑定理。

  (二)垂徑定理及證明:

  已知:在⊙O中,CD是直徑,AB是弦,CDAB,垂足為E。

  求證:AE=EB, =, =。

  證明:連結OA、OB,則OA=OB。又∵CDAB,直線CD是等腰△OAB的對稱軸,又是⊙O的對稱軸。所以沿著直徑CD折疊時,CD兩側的兩個半圓重合,A點和B點重合,AE和BE重合, 、 分別和 、 重合。因此,AE=BE, =, =。從而得到圓的一條重要性質。

  垂徑定理:平分這條弦,并且平分弦所對的兩條弧。

  組織學生剖析垂徑定理的條件和結論:

  CD為⊙O的直徑,CDAB AE=EB,

  為了運用的方便,不易出現錯誤,將原定理敘述為:

  ①過圓心;

  ②垂直于弦;

  ③平分弦;

  ④平分弦所對的優弧;

  ⑤平分弦所對的劣弧。

  加深對定理的理解,突出重點,分散難點,避免學生記混。

  (三)應用和訓

  例1、已知在⊙O中,弦AB的長為8cm,圓心O到AB的距離為3cm,求⊙O的半徑。

  分析:要求⊙O的半徑,連結OA,只要求出OA的長就可以了,因為已知條件點O到AB的距離為3cm,所以作OEAB于E,而AE=EB= AB=4cm。此時解Rt△AOE即可。

  解:連結OA,作OEAB于E。

  則AE=EB。

  ∵AB=8cm,AE=4cm。

  又∵OE=3cm,

  在Rt△AOE中,

  (cm)。

  ⊙O的半徑為5 cm。

  說明:①學生獨立完成,老師指導解題步驟;②應用垂徑定理計算:涉及四條線段的長:弦長a、圓半徑r、弦心距d、弓形高h

  關系:r =h+d; r2 =d2 + (a/2)2

  例2、 已知:在以O為圓心的兩個同心圓中,大圓的弦AB交小圓于C、D兩點。求證AC=BD。(證明略)

  說明:此題為基礎題目,對各個層次的學生都要求獨立完成。

  練習1:教材P78中練習1,2兩道題。由學生分析思路,學生之間展開評價、交流。

  指導學生歸納:①構造垂徑定理的基本圖形,垂徑定理和勾股定理的結合是計算弦長、半徑、弦心距等問題的常用方法;②在圓中解決弦的有關問題經常作的輔助線弦心距。

  (四)小節與反思

  教師組織學生進行:

  知識:

  (1)圓的軸對稱性;

  (2)垂徑定理及應用。

  方法:

  (1)垂徑定理和勾股定理有機結合計算弦長、半徑、弦心距等問題的方法,構造直角三角形;

  (2)在因中解決與弦有關問題經常作的輔助線弦心距;

  (3)為了更好理解垂徑定理,一條直線只要滿足

  ①過圓心;

  ②垂直于弦;則可得

  ③平分弦;

  ④平分弦所對的優弧;

  ⑤平分弦所對的劣弧。

  (五)作業

  教材P84中11、12、13。

  第二課時 (二)

  教學目標 :

  (1)使學生掌握垂徑定理的兩個推論及其簡單的應用;

  (2)通過對推論的探討,逐步培養學生觀察、比較、分析、發現問題,概括問題的能力。促進學生創造思維水平的發展和提高

  (3)滲透一般到特殊,特殊到一般的辯證關系。

  教學重點、難點:

  重點:

  ①垂徑定理的兩個推論;

  ②對推論的探究方法。

  難點:垂徑定理的推論1。

  學習活動設計

  (一)分解定理(對定理的剖析)

  1、復習提問:定理:平分這條弦,并且平分弦所對應的兩條弧。

  2、剖析:

  (教師指導)

  (二)新組合,發現新問題:(A層學生自己組合,小組交流,B層學生老師引導)

  (包括原定理,一共有10種)

  (三)探究新問題,歸納新結論:

  (1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦對應的兩條弧。

  (2)弦的垂直平分線經過圓心,并且平分弦對應的兩條弧。

  (3)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  (4)圓的兩條平行線所夾的弧相等。

  (四)鞏固練習:

  練習1、平分弦的直徑垂直于弦,并且平分弦所對的兩條弧這句話對嗎?為什么?

  (在推論1(1)中,為什么要附加不是直徑這一條件。)

  練習2、填空:在⊙O中,

  (1)若MNAB,MN為直徑,則________,________,________;

  (2)若AC=BC,MN為直徑,AB不是直徑,則則________,________,________;

  (3)若MNAB,AC=BC,則________,________,________;

  (4)若 =,MN為直徑,則________,________,________。

  (此題目的:鞏固定理和推論)

  (五)應用、反思

  例、四等分 。

  (A層學生自主完成,對于其他層次的學生在老師指導下完成)

  教材P80中的第3題圖,是典型的錯誤作。

  此題目的:是引導學生應用定理及推論來平分弧的方法,通過學生自主操作培養學生的動手能力;通過與教材P80中的第3題圖的對比,加深學生對感性知識的認識及理性知識的理解。培養學生的思維能力。

  (六)小結:

  知識:垂徑定理的兩個推論。

  能力:

  ①推論的研究方法;

  ②平分弧的作圖。

  (七)作業 :

  第三課時

  垂徑定理及推論在解題中的應用

  教學目的:

  ⑴要求學生掌握垂徑定理及其推論,會解決有關的證明,計算問題。

  ⑵培養學生嚴謹的邏輯推理能力;提高學生方程思想、分類討論思想的應用意識。

  ⑶通過例4(趙州橋)對學生進行愛國主義的教育;并向學生滲透數學來源于實踐,又反過來服務于實踐的辯證唯物主義思想

  教學重點:垂徑定理及其推論在解題中的應用

  教學難點 :如何進行輔助線的添加

  教學內容:

  (一)復習

  1垂徑定理及其

  推論1:對于一條直線和一個圓來說,具備下列五個條件中的任何個,那么也具有其他三個:

  ⑴ 直線過圓心 ;

  ⑵ 垂直于弦 ;

  ⑶ 平分弦 ;

  ⑷ 平分弦所對的優弧 ;

  ⑸ 平分弦所對的劣弧。可簡記為:知2推3

  推論2:圓的兩條平行弦所夾的弧相等。

  2應用垂徑定理及其推論計算(這里不管什么層次的學生都要自主研究)

  涉及四條線段的長:弦長a、圓半徑r、弦心距d、弓形高h關系:r =h+d ; r2 =d2 + (a/2)2

  3常添加的輔助線:(學生歸納)

  ⑴ 作弦心距 ;

  ⑵ 作半徑 。——————構造直角三角形

  4可用于證明:線段相等、弧相等、角相等、垂直關系;同時為圓中的計算、作圖提供依據。

  (二)應用例題:(讓學生分析,交流,解答,老師引導學生歸納)

  例1、1300多年前,我國隋代建造的趙州石拱橋的`橋拱是圓弧形,它的跨度(弧所對的弦的長)為37.4米,拱高(弧中點到弦的距離,也叫弓形的高)為7.2米,求橋拱的半徑(精確到0.1米)。

  說明:

  ①對學生進行愛國主義的教育;

  ②應用題的解題思路:實際問題(轉化,構造直角三角形)數學問題。

  例2、已知:⊙O的半徑為5 ,弦AB∥CD ,AB =6 ,CD =8 。求:AB與CD間的距離。(讓學生畫圖)

  解:分兩種情況:

  (1)當弦AB、CD在圓心O的兩側

  過點O作EFAB于E,連結OA、OC,

  又∵AB∥CD,EFCD。(作輔助線是難點,學生往往作OEAB,OFAB,就得EF=OE+OF,錯誤的結論)

  由EF過圓心O,EFAB,AB =6,得AE=3,

  在Rt△OEA中,由勾股定理,得

  同理可得:OF=3

  EF=OE+OF=4+3=7。

  (2)當弦AB、CD在圓心O的同側

  同(1)的方法可得:OE=4,OF=3。

  說明:

  ①此題主要是滲透分類思想,培養學生的嚴密性思維和解題方法:確定圖形分析圖形數形結合解決問題;

  ②培養學生作輔助線的方法和能力。

  例3、 已知:AB是⊙O的弦,半徑OC∥AB ,AB=24 ,OC =15 。求:BC的長。

  解:(略,過O作OEAE于E ,過B作BFOC于F ,連結OB。BC =)

  說明:通過添加輔助線,構造直角三角形,并把已知與所求線段之間找到關系。

  (三)應用訓練:

  P8l中1題。

  在直徑為650mm的圓柱形油槽內裝入一些油后。截面如圖所示,若油面寬AB=600mm,求油的最大深度。

  學生分析,教師適當點撥。

  分析:要求油的最大深度,就是求有油弓形的高,弓形的高是半徑與圓心O到弦的距離差,從而不難看出它與半徑和弦的一半可以構造直角三角形,然后利用垂徑定理和勾股定理來解決。

  (四)小結:

  1 垂徑定理及其推論的應用注意指明條件。

  2 應用定理可以證明的問題;注重構造思想,方程思想、分類思想在解題中的應用。

  (五)作業 :教材P84中15、16題,P85中B組2、3題。

  探究活動

  直線MN與⊙O交于點A、B,CD是⊙O的直徑,CEMN于E,DFMN于F,OHMN于H。

  (1)線段AE、BF之間存在怎樣的關系?線段CE、OH、DF之間滿足怎樣的數量關系?并說明理由。

  (2)當直線CD的兩個端點在MN兩側時,上述關系是否仍能成立?如果不成立,它們之間又有什么關系?并說明理由。

  (答案提示:(1)AE=BF,CE+DF=2OH,(2)AE=BF仍然成立,CE+DF=2OH不能成立。CE、DF、OH之間應滿足)

【《垂直于弦的直徑》的課程教學設計】相關文章:

垂直于弦的直徑教學設計12-19

垂直于弦的直徑教學反思07-10

垂直于弦的直徑說課稿02-20

垂直于弦的直徑優質說課稿06-21

九年級上冊垂直于弦的直徑教學設計01-08

九年級上《垂直于弦直徑》教學設計07-01

垂直于弦的直徑的評課稿11-07

垂直于弦的直徑同課異構的評課稿11-08

垂直于弦的直徑同課異構評課稿11-02