等比數列的教學設計方案
教學目標
1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.
(1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念;
(2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數及指定的項;
(3)通過通項公式認識的性質,能解決某些實際問題.
2.通過對的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.
3.通過對概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.
教學建議
教材分析
(1)知識結構
是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.
(2)重點、難點分析
教學重點是的定義和對通項公式的認識與應用,教學難點 在于通項公式的推導和運用.
①與等差數列一樣,也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出的特性,這些是教學的重點.
②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.
③對等差數列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學建議
(1)建議本節課分兩課時,一節課為的概念,一節課為通項公式的應用.
(2)概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到的定義.也可將幾個等差數列和幾個混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.
(3)根據定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
(4)對比等差數列的表示法,由學生歸納的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.
(5)由于有了等差數列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.
(6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.
教學設計示例
課題:的概念
教學目標
1.通過教學使學生理解的概念,推導并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.
3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.
教學重點,難點
重點、難點是的定義的歸納及通項公式的推導.
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)
(板書)
1.的定義(板書)
根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.
請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的`一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:
2.對定義的認識(板書)
(1)的首項不為0;
(2)的每一項都不為0,即 ;
問題:一個數列各項均不為0是這個數列為的什么條件?
(3)公比不為0.
用數學式子表示的定義.
是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?
式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.的通項公式(板書)
問題:用 和 表示第 項 .
①不完全歸納法
②疊乘法,… , ,這個式子相乘得 ,所以 .
(板書)(1)的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
(板書)(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).
這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.
1.本節課研究了的概念,得到了通項公式;
2.注意在研究內容與方法上要與等差數列相類比;
3.用方程的思想認識通項公式,并加以應用.
四、作業 (略)
五、板書設計
1.等比數列的定義
2.對定義的認識
3.等比數列的通項公式
(1)公式
(2)對公式的認識
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).
【等比數列的教學設計方案】相關文章:
《等比數列》教學反思范文06-14
等比數列定義教學反思01-26
數學等比數列教學計劃05-18
來自等比數列的概念教學設計08-05
高三數學《等比數列》教學設計01-03
等比數列教學反思(通用5篇)05-30
《等比數列》說課稿12-23
等比數列的前n項和教學反思12-20
高三數學《等比數列》教學計劃03-13