- 相關推薦
四年級數學優質課《三角形內角和》教學設計(精選10篇)
作為一無名無私奉獻的教育工作者,總不可避免地需要編寫教學設計,借助教學設計可以更好地組織教學活動。那要怎么寫好教學設計呢?以下是小編整理的四年級數學優質課《三角形內角和》教學設計,歡迎大家分享。
四年級數學優質課《三角形內角和》教學設計 篇1
教學內容:
義務教育課程表準教科書數學(人教版)四年級下冊85頁.例題5.
教學目標:
1.讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2.讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。
3.使學生體驗成功的喜悅,激發學生主動學習數學的興趣。
教學重點:
讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。
教學準備:
多媒體課件、學具。
教學過程:
一、激趣引入
(一)認識三角形內角
1.我們已經認識了三角形,什么是三角形?誰能說三角形按角分類,可以分成哪幾類?(學生回答問題.)
2.請看屏幕(課件演示三條線段圍成三角形的過程)。
三條線段圍成三角形后,在三角形內形成了三個角,(課件分別出現三個角的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。
(二)設疑,激發學生探究新知的心理
1.請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)
學生安要求畫三角形.
2.問:有誰畫出來啦?
(課件演示):是不是畫成這個樣子了?只能畫兩個直角。問題出現在哪兒呢?這一定有什么奧秘?那就讓我們一起來研究吧!
二、動手操作,探究新知
(一)研究特殊三角形的內角和
1.請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動其中的.一塊三角板)
學生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)
這個三角形各角的度數。它們的和是多少?
學生回答:是180°。
追問:你是怎樣知道的?
生:90°+45°+45°=180°。
把三角形三個內角的度數合起來就叫三角形的內角和。
板題:三角形內角和
2.(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?
90°+60°+30°=180°。
3.從剛才兩個三角形內角和的計算中,你發現什么?
這兩個三角形的內角和都是180°。這兩個三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形內角和
1.猜一猜。
猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。
2.操作、驗證一般三角形內角和是180°。
(1)小組合作、進行探究。
1.所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?那就請四人小組共同研究吧!
2.每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,小組活動的要求如下:課件顯示
組長負責填寫表格,組員每人負責量一個三角形的每個內角,并記錄下來,最后算出這個三角形的內角和,把結果告訴組長.
量一量,完成表格.
三角形的名稱
內角和的度數
銳角三角形
直角三角形
(2)小組匯報結果。
請各小組匯報探究結果。
(三)繼續探究
沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
引導學生用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
1.用拼合的方法驗證。
小組內完成,活動的要求同上.
拼一拼,完成表格.
三角形的名稱
是否可以拼成平角
銳角三角形
直角三角形
對角三角形
2.匯報驗證結果。
先驗證銳角三角形,我們得出什么結論?
(銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。
直角三角形的內角和也是180°。
鈍角三角形的內角和還是180°)。
3.課件演示驗證結果。
請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)
我們可以得出一個怎樣的結論?
(三角形的內角和是180°。)
(教師板書:三角形的內角和是180°學生齊讀一遍。)
為什么用測量計算的方法不能得到統一的結果呢?
(量的不準。有的量角器有誤差。)
三、解決疑問。
現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)
(因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)
在一個三角形中,有沒有可能有兩個鈍角呢?
(不可能。)
追問:為什么?
(因為兩個銳角和已經超過了180°。)
問:那有沒有可能有兩個銳角呢?
(有,在一個三角形中最少有兩個內角是銳角。)
四、應用三角形的內角和解決問題。
1. 看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)
2. 85頁做一做:
在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數.
3.88頁第9.10題(數學信息較為隱藏和生活中的實際問題)
4.89頁16題.思考題
板書設計:
三角形內角和180°
四年級數學優質課《三角形內角和》教學設計 篇2
教學目標分析:
1、通過學生的實際操作,理解并驗證三角形的內角和等于180°,并能夠運用結論解決簡單的實際問題;
2、使學生通過觀察、實驗,經歷猜想與驗證三角形內角和的探索過程,在活動中發展學生的空間觀念和推理能力。
3、已經有不少學生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在學習時的主要目標是驗證三角形的內角和是180度。
教學過程設計本微課教學過程:
一、明確多邊形的內角、內角和概念。
首先要明確概念,才好繼續研究。內角、內角和以前學生沒有學過,還是有必要給學生明確的。
二、探索三角尺的內角和,猜想三角形的內角和。
從學生熟悉的三角板開始計算三角板的內角和,引發學生猜想,三角形的內角和是多少。
三、驗證三角形內角和是否為180°。
驗證分為三個層次:首先是量教材提供的三角形,算出內角和,可能會有誤差。其次把三角形三個內角拼在一起,拼成是平角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結論。讓學生經歷由特殊到一般的認知過程。
四、拓展延伸,探究梯形、平行四邊形和六邊形內角和。
由三角形的內角和,學生自然就會想到已學過的梯形、平行四邊形和六邊形內角和是多少呢。教師留下問題讓學有余力的學生進一步去探索。
五、自主學習檢測
學生觀看完了視頻是否學會了,是需要檢測的。學生通過做完自主檢測后進行校對,檢驗自己所學。
學習指導本微視頻應配合下面的學習任務單共同使用,在觀看視頻時,根據視頻提示隨時暫停視頻依次完成任務單。
自主學習前準備:
請在自主學習前閱讀學習任務單的學習指南,并準備好數學書、一副三角尺、量角器、剪刀、鉛筆等學習用具。
自主學習任務單:
通過觀看教學資源自學,完成下列學習任務:
任務一:明確多邊形的`內角、內角和概念
1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標出來。
2、你剛才標出的角,又叫做每個圖形的()。
3、如果把一個圖形所有的內角的度數加起來,所得的總和就是這個圖形的()。
4、你知道圖中長方形和正方形的內角和是多少度嗎?你是怎么知道的?
長方形內角和正方形內角和
任務二:探索三角尺的內角和,猜想三角形的內角和。
1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數?在圖上標出來。
2、算一算,每個三角尺3個內角的和是多少度。
3、根據你剛才的計算結果,你能猜想一下,任意一個三角形它的內角和的度數呢?
任務三:驗證任意三角形內角和是否為180°
1、請從數學書本第113頁剪下3個三角形,用量角器量出每個三角形3個內角的度數。
算一算,每個三角形3個內角的和是多少度。
2還可以用什么辦法來驗證剪下的這3個三角形的內角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。
溫馨提示:平角正好是180°,這三個內角能正好拼成一個平角嗎?
3、自己任意畫一個三角形,先剪下來,再拼一拼。
4、你發現了什么?寫在下面。
5、請你回顧一下我們研究三角形形內角和是180度的過程?簡單的寫下來。
任務四:拓展延伸
任務一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內角和。
任務五:自主學習檢測
1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3個三角形還可以怎樣計算,哪種更簡便?
3、一塊三角尺的內角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內角和是多少度?
4、用一張長方形紙折一折,填一填
配套學習資料蘇教版小學數學四年級下冊教材
制作技術介紹Camtasia Studio軟件制作、PPT。
四年級數學優質課《三角形內角和》教學設計 篇3
【設計理念】
新課標重視讓學生經歷數學知識的形成過程,要求教師創設有效的問題情境激發學生的參與欲望,提供足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數學問題的活動經驗,發展空間觀念和推理能力。
【教材內容】
新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習十六的第1、2、3題。
【教材分析】
三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發現,安排兩次實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。
【學情分析】
1、在學習本課時,學生已經有了探索三角形內角和的知識基礎:知道直角和平角的度數,會用量角器度量角的'度數;認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經知道了等腰三角形和正三角形。
2、已經有一部分學生知道了三角形內角和是180°,只是知其然而不知所以然。
【教學目標】
1通過“量、剪、拼”等活動發現、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數學活動經驗,發展空間觀念和推理能力。
3.在參與數學學習活動的過程中,獲得成功的體驗,感受數學探究的嚴謹與樂趣。
【教學重點】
探索發現、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。
【教學難點】驗證“三角形的內角和是180°”。
【教(學)具準備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學步驟】
一、復習舊知 引出課題
1、你已經知道有關三角形的哪些知識?
2、出示課題:三角形的內角和
設計意圖:也自然導入新課。
二、提出問題 引發猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預設:
(1)三角形的內角指的是哪些角?
(2)三角形的內角和是什么意思?
(3)三角形的內角一共是多少度?
2、引發猜想
猜一猜:三角形的內角和是多少度?你是怎么猜的?
設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內容,無疑激發了學生的學習興趣,培養了學生的問題意識。由于學生在平時使用三角板時已經若隱若現地有了特殊的直角三角形的內角和是180度這一感覺,因此本環節,要求學生猜一猜三角形的內角和是多少,并說說是怎么猜的,以激發學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊。
三、操作驗證 形成結論
1、交流驗證方法:
(1)用什么方法證明三角形的內角和是180度呢?
預設: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的個數有無數個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內角和來證明其他三角形內角和是180 °的方法。
6、形成結論:任意三角形的內角和是180 °。
設計意圖:《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”猜測后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發現了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養學生嚴謹、科學正確的研究態度,讓學生在活動中積累基本的數學活動經驗,為后續的學習提供了經驗支撐。
四、應用結論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風箏的頂角是多少度?
3、辨析訓練,完善結論。
五、課堂總結,歸納研究方法
今天這節課你學到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:
用今天所學的方法繼續研究四邊形的內角和。
七、板書設計:
三角形的內角和
猜測: 三角形的內角和是180°?
驗證: 量 拼
結論: 任意三角形的內角和是180°
四年級數學優質課《三角形內角和》教學設計 篇4
【教學目標】
1、學生動手操作,通過量、剪、拼、折的方法,探索并發現“三角形內角和等于180度”的規律。
2、在探究過程中,經歷知識產生、發展和變化的過程,通過交流、比較,培養策略意識和初步的空間思維能力。
3、體驗探究的過程和方法,感受思維提升的過程,激發求知欲和探索興趣。
【教學重點】
探究發現和驗證“三角形的內角和180度”這一規律的過程,并歸納總結出規律。
【教學難點】
對不同探究方法的指導和學生對規律的靈活應用。
【教具準備】
課件、表格、學生準備不同類型的三角形各一個,量角器。
【教學過程】
一、激趣引入。
1、猜謎語
師:同學們喜歡猜謎語嗎?
生:喜歡。
師:那么,下面老師給大家出個謎語。請聽謎面:
形狀似座山,穩定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?
生:三角形
2、介紹三角形按角的分類
師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類
師分別出示卡片貼于黑板。
3、激發學生探知心里
師:大家會不會畫三角形啊?
生:會
師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!
生:試著畫
師:畫出來沒有?
生:沒有
師:畫不出來了,是嗎?
生:是
師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節課我們就來學習有關三角形角的`知識“三角形內角和”(板書課題)
二、探究新知。
1、認識三角形的內角
看看這三個字,說說看,什么是三角形的內角?
生:就是三角形里面的角。
師:三角形有幾個內角啊?
生:3個。
師:那么為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)
師:你知道什么是三角形“內角和”嗎?
生:三角形里面的角加起來的度數。
2、研究特殊三角形的內角和
師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數,那這個三角形的內角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
師:180°也是我們學習過的什么角?
生:平角
師:從剛才兩個三角形的內角和的計算中,你發現了什么?
3、研究一般三角形的內角和
師:猜一猜,其它三角形的內角和是多少度呢?
生:
4、操作、驗證
師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?
要求:
(1)每4人為一個小組。
(2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?
(3)驗證的方法不只一種,同學們要多動動腦子。
師:好,開始活動!
師:巡視指導
師:好!請一組匯報測量結果。
生:通過測量我們發現每個三角形的三個內角和都在180度左右。
師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。
生:我是用撕的方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。
師:好!非常好!
師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)
生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。
師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)
現在老師問同學們,三角形的內角和是多少?
生:180度。
師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等于180度。現在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是180°”。
三、解決疑問
師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?
生:沒有
師:那你能用這節課的知識解釋一下為什么畫不出來嗎?
生:兩個直角是180度,沒有第三個角了。
師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?
生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。
師:學會了知識,我們就要懂得去運用。
四、鞏固提高。
1、填空。
(1)三角形的內角和是()度。
(2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。
2、求下面各角的度數。
(1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。
(2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。
3、判斷每組中的三個角是不是同一個三角形中的三個內角。
(1)80° 95° 5°( )
(2)60° 70° 90°( )
(3)30° 40° 50°( )
4、紅領巾是一個等腰三角形,求底角的度數。(多媒體出示)
對學生進行思品教育。
5、思考延伸。
根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?
6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°
五、總結。
四年級數學優質課《三角形內角和》教學設計 篇5
【教材內容】:
北師大版四年級數學下冊
【教學目標】:
1、探索與發現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、培養學生動手操作和合作交流的能力,促進掌握學習數學的方法。
3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣。
【教學重點和難點】:
重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。
【教材分析】
《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發現三角形的內角和是180°。擴充了學生認識圖形的一般規律從直觀感性的認識到具體的性質探索,更加深入的培養了學生的空間觀念。
【教學過程】
一、創設情境,激發興趣。
出示課件,提出兩個兩個疑問:
1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?
2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發現它們爭論的焦點是三角形的內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?
二、初建模型,實際驗證自己的猜想
在第一步的基礎上學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。
三角形的形狀
三角形每個內角的度數
內角和
銳角三角形
鈍角三角形
直角三角形
等腰三角形
等邊三角形
三、再建模型,徹底的得出正確的結論
因為在上一環節學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的`方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。
四、應用新知,鞏固練習
1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數。(1小題屬于基本練習)
2、試一試,在直角三角形中已知其中的一個角求另一個角的度數
3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數求三角形的頂角。
4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?
五、拓展與延伸
通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。
四年級數學優質課《三角形內角和》教學設計 篇6
一、教學目標
1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發現三角形三個內角的度數和等于180°這一規律,并能實際應用。
2.能力目標:培養學生主動探索、動手操作的能力。使學生養成良好的合作習慣。
3.情感目標:讓學生體會幾何圖形內在的結構美。并充分體會到學習數學的快樂。
二、教學過程
(一)創設情境,導入新課
1、師:我們已經認識了三角形,你知道哪些關于三角形的知識?
(學生暢所欲言。)
2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!
師口述:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,
3、到底誰說的對呢?今天我們就來研究有關三角形內角和的知識。(板書課題:三角形內角和)
(二)自主探究,發現規律
1、認識什么是三角形的內角和。
師:你知道什么是三角形的內角和嗎?
通過學生討論,得出三角形的內角和就是三角形三個內角的'度數和。
2、探究三角形內角和的特點。
①讓學生想一想、說一說怎樣才能知道三角形的內角和?
學生會想到量一量每個三角形的內角,再相加的方法來得到三角形的內角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)
②小組合作。
通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結果)讓學生們發現每個三角形的內角和都在180°左右。
引導學生推測出三角形的內角和可能都是180°。
3、驗證推測。
讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。
(小組合作驗證,教師參與其中。)
4、全班交流,共同發現規律。
當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結果。
學生交流、師生共同總結出三角形的內角和等于180°。教師同時板書(三角形內角和等于180°。)
5、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統的整理。)
(三)鞏固練習,拓展應用
根據發現的三角形的新知識來解決問題。
1、完成“試一試”
讓學生獨立完成后,集體交流。
2、游戲:選度數,組三角形。
請選出三個角的度數來組成一個三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
學生回答的同時,教師操作課件,把學生選擇的度數拖入方框內,通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。
3、“想想做做”第1題
生獨立完成,集體訂正,并說說解題方法。
4、“想想做做”第2題
提問:為什么兩個三角形拼成一個三角形后,內角和還是180度?
5、“想想做做”第3題
生動手折折看,填空。
提問:三角形的內角和與三角形的大小有關系嗎?三角形越大,內角和也越大嗎?
6、“想想做做”第5題
生獨立完成,說說不同的解題方法。
7、“想想做做”第6題
學生說說自己的想法。
8、思考題
教師拿一個大三角形,提問學生內角和是多少?用剪刀剪成兩個三角形,提問學生內角和是多少?為什么?再剪下一個小三角形,提問學生內角和是多少?為什么?最后建成一個四邊形,提問學生內角和是多少?你能推導
出四邊形的內角和公式嗎?
(四)課堂總結
本節課我們學習了哪些內容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規律,再將規律運用到實踐當中去。
四年級數學優質課《三角形內角和》教學設計 篇7
【教學內容】
新課標人教版四年級下冊第五單元《三角形》
【教材分析】
“三角形內角和”這節課是新課標人教版四年級下冊第五單元的教學內容,是在學生學習了三角形的概念及特征之后進行的。教材先給出了量這一思路,繼而讓學生探索驗證三角形內角和是180度這一觀點。在活動過程中,先通過“畫一畫、量一量”,產生初步的發現和猜想,再“拼一拼、折一折”,引導學生對已有猜想進行驗證,經歷提出猜想——進行驗證的的過程,滲透數學學習方法和思想。
【學生分析】
學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。
【學習目標】
1.學生動手操作,通過量、剪、拼、折的方法,探索并發現“三角形內角和等于180度”的規律。
2.在探究過程中,經歷知識產生、發展和變化的過程,通過交流、比較,培養策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發求知欲和探索興趣。
【教學過程】
一、創設情境,發現問題
1、魔術導入:把長方形的紙剪兩刀,怎樣拼成一個三角形?
2、你知道三角形的那些知識?(復習)
3、小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創設的不是生活中的情境,而是數學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現出學生在認知上的矛盾,學生用已經學的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的'這種認知沖突,激發學生的學習興趣。)
二、引導探究,解決問題
1.介紹內角、內角和
師:我們現在研究三角形的三個角,都是它的內角,以后到了初中,還會接觸三角形的外角。看老師手里的三角形,關于它的三個內角,除了我們已經掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內角和指的是什么?
已經知道三角形的內角和是多少的同學,可以把它寫在本上。不知道的同學想一想,計量內角和的單位是度,可以估計一下,各種各樣的三角形的內角和是不是一個固定的數,有可能會是多少度,把你的猜想也寫在本上。
我們這節課就來一起探究用哪些方法能知道三角形的內角和。
2.確定研究范圍(預設約3-5分)
師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)
請你想個辦法吧!
(通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數學思想)
3.動手操作實踐(預設約8-10分)
同桌組成學習小組,拿出課前制作的各種各樣的三角形,先找到三個內角,把每個角標上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學的三角形,看看各種三角形內角和是不是一樣的。(學生動手操作試驗,在小組中討論問題)
(為了滿足學生的探究欲望,發揮學生的主觀能動性,我在設計學具的時候,想了幾個不同的方案,最后決定課前讓學生在學習小組里分工合作制作各種不同的三角形,課上就讓學生就用自己制作的三角形,通過獨立探究和組內交流,實現對多種方法的體驗和感悟。)
4.匯報交流(預設約15-20分)
(1)測量的方法
學生匯報量的方法,師請同學評價這種方法。
師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
(2)剪拼的方法
學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)
師:把三角形的三個內角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產生誤差,有時會差一點點,誰還有別的方法確定三角形的內角和一定是180°?
(3)折拼的方法
學生匯報后師小結:我們要研究三角形的內角和,實際上就是想辦法把三角形的三個內角湊到一起,像剪和折的方法,看三個內角拼到一起是不是180度,都是借助我們學過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內角和一定是180度?
(4)演繹推理的方法
(借助學過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認為這種方法好不好?我們看看是不是這么回事。
師小結:這種方法避免了在剪拼過程中由于操作出現的誤差,非常準確的說明了三角形的內角和一定是180度。
(學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發展而言,探究的過程比探究獲得的結論更有價值。)
學生用的方法會非常多,怎樣對這些方法進行引導,是值得思考的問題。這些方法的思維水平不應該是平行的:直接測量的方法是學生利用已有的知識,測量出每個角的度數,再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。
前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內角和是原來長方形的四個內角之和360度,所以一個三角形的內角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內角和,它有嚴密性和精確性。基于以上的想法,我覺得在課上不能停留在學生對方法的描述上,而應引導學生經歷從直觀到抽象、思維程度從低到高的過程,感悟數學的嚴謹性。所以在最后一個環節中,教師向全班同學推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導和點撥的作用。學生在經歷量和拼之后,逐漸會在思維發散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發現一些新的規律。】
5.驗證猜想
請學生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內角和都是180度,那就可以說,所有的三角形的內角和都是180度。
這個結論和課前剛才知道的或猜的一樣嗎?
(在很多同學都知道三角形內角和的情況下,要引導學生領悟有了猜測還要去驗證,這是一種科學的研究問題的方法,是一種求實精神。)
6.解釋課前問題
用內角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應用,深化創新
1.介紹科學家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發現和驗證的,他12歲就發現三角形內角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發現。
2.四邊形內角和及多邊形內角和(幻燈片)
你打算用哪種方法知道四邊形的內角和?
你覺得哪種方法更好?
(設計求四邊形的內角和,是把這個新問題轉化歸結為求幾個三角形內角和的問題上,滲透化歸的數學學習方法。)
3.總結
我們把四邊形一分為二,用三角形內角和的知識知道了四邊形內角和,那么五邊形、六邊形……這些多邊形的內角和是多少度?有沒有什么規律可循,希望同學們能用學到的知識和方法去探究問題,你還會有一些精彩的發現。
四年級數學優質課《三角形內角和》教學設計 篇8
教學目標:
1.知道三角形的內角和是180度,理解三角形內角和與三角形的大小無關。
2.通過測量、計算、猜想、實驗等數學活動,積累認識圖形的方法和經驗,逐步推理、歸納出三角形內角和。
3.關注學生在操作活動中遇到的真問題,培養學生誠實嚴謹的實驗態度,實事求是的科學的態度。
教學重點:
知道三角形的內角和是180度,理解三角形的內角和與三角形的大小、形狀無關。
教學難點:
經歷操作活動,推理、歸納出三角形的內角和。
教學資源:
多煤體課件,各種三角形,三角板,量角器,剪刀。
教學活動:
一、創設情境,導入新課。
1.昨天我們學習了三角形的分類,三角形按角的特征怎么分類?按邊的特征怎么分類?
2.信封中裝一個三角形露出一個銳角,猜一猜信封中裝的是一個什么三角形?能確定嗎?(露出一個鈍角)現在能確定了嗎?為什么現在就能確定了?(有一個鈍角,兩個銳的三角形是鈍角三角形)。
3.三角形中還隱藏著那些知識?三角形的三個內角的和是多少度?這節課我們研究三角形的內角和。(板書課題:三角形的內角和)
二、合件交流,操作發現。
1.(課件)你知道三角尺內角的度數分別是多少嗎?每個直角三角尺的內角度數之和都是多少度?我們能根據三角尺的內角和是180度,就得出三角形的內角和的結論嗎?應該怎么研究?(應該把三角形中所有的類型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結論)(課件出示學習單)。
2.組織學生小組合作:
請同學們以4人為一個小組,三個人分別量一量,算一算一種三角形的內角的度數,小組長填寫學習單。老師巡視。①師:能不能只量出兩個角的度數,不量第三個角的度數,就開始填表、計算?(我們的研究必須是科學的、實事求是的`,測量的數據必須是真實的,來不的半點馬虎)。②同桌交流,你們有什么發現?
3.組織學生匯報交流:
①那個組說一說你們組測量的數據和計算的結果?(學生的計算不是正好180度時,問:大約是多少度?)②你們有什么發現?(銳角三角形、直角三角形、鈍角三角形的內角和大約都是180度。③你能提出什么猜想?(我猜三角形的內角和是180度)老師板書:三角形的內角和是180°我們的猜想對不對,(在板書后面打上“?”),就需要我們驗證,請同學們想辦法驗證我們的猜想對不對?(學生通過折的方法剪拼進行驗證;學生通過剪、拼的方法進行驗證。)
4.學生展臺展示自己的難方法。通過驗證,我們發現三角形的內角和是180度。老師把“?”改為“!”。
5.操作總會有誤差,有沒有別的方法說明呢?(老師課件演示長方形的四個角都是直角,所以長方形的內角和應為:90°×4=360°。將長方形沿對角線分割,可以分成兩個完全相等的直角三角形,所以直角三角形內角和應為:360°÷2=180°;沿高可以將任意三角形分成兩個直角三角形。由于前面證明了任意直角三角形的內角和是180°,因此兩個直角三角形的內角和應為:180°×2=360°。而直角三角形的兩個直角不屬于分割前三角形的內角,因此任意三角形的內角和應為:360°-180°=180°。)
三、實踐應用,拓展延伸。
1.這里有一條紅領巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。
2.把下面這個三角形沿虛線剪成兩個小三角形,每個小三角形的內角和是多少度?(把一個三角形剪成兩個小三角形,雖然大小發生了變化,可是內角和依然是180度,說明三角形的內角和與三角形大小無關)。
四、反思總結,自我建構。
這節課你有什么收獲?
這節課我們就研究到這兒,同學們再見!
四年級數學優質課《三角形內角和》教學設計 篇9
教學目標:
1、通過測量一量、拼一拼、折一折三個活動,探索和發現三角形三個內角的度數和等于180°。
2、已知三角形兩個角的度數,會求出第三個角的度數。
3、經歷三角形內角和的研究方法,感受數學研究方法。
教學重點:
1、探索和發現三角形三個內角的度數和等于180°。
2、已知三角形兩個角的度數,會求出第三個角的度數。
教學難點:
掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。
教學用具:
表格、課件。
學具準備:
各種三角形、剪刀、量角器。
一、創設情境揭示課題。
1、一天兩個三角形發生了爭執,他們請你們來評評理。大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。
生1:大三角形大(個子大)
生2:小三角形大(有鈍角)
(教師不做判斷,讓學生帶著問題進入新課)
2、什么是三角形的內角和?(板書:內角和)
講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的內角和。
二、自主探究,合作交流。
(一)提出問題:
1、你認為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內角和呢?
生1:用量角器量一量三個內角各是多少度,把它們加起來,再比較。
生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。
生3:用折一折的辦法把三個角折到一起看它們能不能組成平角
(二)探索與發現
活動一:量一量
(1)①了解活動要求:(屏幕顯示)
A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)
B、把測量結果記錄在表格中,并計算三角形內角和。
C、討論:從剛才的測量和計算結果中,你發現了什么?
(引導生回顧活動要求)
②小組合作。
③匯報交流。
你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發現了什么?
(引導學生發現每個三角形的三個內角和都在180°,左右。)
(2)提出猜想
剛才我們通過測量和計算發現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)
活動二:拼一拼,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?
(1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°)。
(2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?
(3)分組匯報,討論質疑
(4)課件演示,驗證結果
活動三:折一折
師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。
(把三角形的角1折向它的'對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°,)。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?
提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結,得出結論。
(1)引導學生得出結論。
孩子們,三角形內角和到底等于多少度呢?”
學生答:“180°!”
(2)總結方法,齊讀結論
我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們為自己的成功鼓掌!齊讀結論。(板書:得到結論)
(3)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°
(三)回顧問題:
現在你知道這兩個三角形誰說得對了嗎?(都不對!)
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內角和等于1800180°。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數學書28頁第3題
∠A=180°-90°-30°
2、練一練:數學書29頁第一題(生獨立解決)
∠A=180°-75°-28°
3、小法官:數學書29頁第二題
四、回顧課堂,滲透數學方法。
1、總結:猜想—驗證—歸納—應用的數學方法。
2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內角和
板書設計:
探索與發現(一)
三角形內角和等于180°
四年級數學優質課《三角形內角和》教學設計 篇10
學情分析:
學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。
教學目標:
1、知識與技能:
通過操作活動探索發現和驗證“三角形的內角和是180度”的規律。
2、過程與方法:
通過量一量、剪一剪、拼一拼,培養學生的合作能力、動手實踐能力,并運用新知識解決問題的能力。
3、情感態度:
使學生體驗數學學習成功的喜悅,激發學生主動學習數學的興趣。
教學重點:
探索發現和驗證三角形的內角和是180度。
教學難點:
對不同探究方法的指導和學生對規律的靈活應用。
教具準備:
教師準備:
多媒體課件、不同類形大小不一的三角形若干個、記錄表
學生準備:
量角器、直尺、剪刀
教學過程:
一、激趣導入
多媒體展示三角形
出示謎語:形狀似座山,穩定性能堅
三竿首尾連,學問不簡單?????(打一圖形名稱)
(預設:三角形)
師:誰能介紹介紹三角形?
(生1:三角形有三條邊、三個頂點、三個角。
生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)
師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)
師:同學們會畫三角形嗎?請你在練習本上畫一個你喜歡的三角形。
師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。
師:今天我們就來研究一下三角形的'內角和。
二、學習目標
1、通過動手操作,使學生理解并掌握三角形內角和是180度的結論。
2、能運用三角形的內角和是180度這一規律,求三角形中未知角的度數。
3、培養動手動腦及分析推理能力。
三、自主學習(展示量角法)
1.理解三角形的內角、內角和
(1)板書展示三角形
師:要想知道什么是三角形的內角和,我們得先知道什么是三角形的內角?(三角形里面的三個角都是三角形的內角。)
師:你能過來指指嗎?同意嗎?內角有幾個?
師:為了研究方便,我們把三角形的三個內角分別標上∠1、∠2、∠3。
師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?
(2)三角形的內角和
師:什么是三角形的內角和?
(三角形三個角的度數的和,就是三角形的內角和,即:∠1+∠2+∠3)
師:就是把∠1+∠2+∠3加起來。
師:根據我們以前的經驗,我們怎么知道∠1、∠2、∠3的度數呢?(預設:用量角器量)
師:請同學們拿出量角器,量一量你畫的三角形的三個內角,并算出他們的和。(4分鐘)
學生測量(1分40)匯報結果(5人)。
教師填寫測量匯報單。
師:觀察匯報的結果,你有什么發現?(所有三角形內角和度數不一樣、三角形內角和都在180度左右)
四、合作探究
師:這是同學們親自測量發現的,沒有得到統一的結果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現在請你們以小組為單位,拿出三角形來研究研究三角形的內角和到底是多少度。?(8分鐘)(剪拼法)
1、操作驗證探索三角形內角和的規律(6分鐘)
(1)操作驗證:小組合作
拿出裝有學具的信封[信封里面有老師為學生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀
(老師要給學生充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)
2、學生匯報
(1)轉化法:
生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內角和就是360度,所以三角形的內角和就是360度的一半180度。
師:他們用長方形的內角和來研究今天所學的知識,得到三角形的內角和是180度。
(2)折拼法
生:把三角形三個內角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內角和是180度。
師:他們是用折拼法驗證三角形的內角和是180度(動手能力真強)
(3)剪拼法
生:把三角形三個內角撕下來,拼成一個平角,平角是180,所以三角形的內角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標記。)
標記上之后再拼一拼,可見標記的方法很科學。(20分鐘)
3、教師演示
師:我們再來感受一下怎么驗證三角形的內角和的?
師:這是什么三角形?把他折一折。
師:這是什么三角形?我們也可以把他折一折。你有什么發現?(折完以后都有一個平角,平角是180度,所以三角形的內角和是180度)
師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內角和。
師:注意觀察。
師:演示完畢有什么發現?(預設這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內角和是180度。
師:剛剛我們研究了什么三角形。他們的內角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)
4、演示任意一個三角形的內角和都是180度。
出示一些三角形,讓學生指出內角和。
師:你有什么發現?(無論是什么樣的三角形他的內角和都是180度,與三角形的形狀大小沒有關系。)(板書三角形的內角和是180度。)
師:那我們再看看剛剛匯報的結果。為什么之前測量的時候并沒有得到這樣得到結果呢?(測量的不夠精確,存在誤差)
師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內角和是180度。現在確定這個結論了嗎?(25分鐘)
師:除了這節課大家想到的方法,還有很多方法也能證明三角形的內角和是180°到初中我們還有更嚴密的方法證明三角形的內角和是180°。早在300多年前就有一位法國著名的科學家帕斯卡,他在12歲時就驗證了任何三角形的內角和都是180°
師:你們能用今天的發現做一些練習嗎?
五、測評反饋
1、判斷。
(1)直角三角形的兩個銳角的和是90°。
(2)一個等腰三角形的底角可能是鈍角。
(3)三角形的內角和都是180°,與三角形的大小無關。
4、剪一剪。
把一個三角形紙板沿直線剪一刀,剩下的紙板的內角和是多少度?
六、課后作業
69頁第1題、第3題。
【四年級數學優質課《三角形內角和》教學設計】相關文章:
《三角形內角和》教學設計03-08
《三角形內角和》教學設計04-07
三角形內角和教學設計03-09
《三角形的內角和》教學設計05-08
三角形內角和教學設計02-13
《三角形的內角和》教學設計03-14
《三角形內角和》教學設計06-08
《三角形內角和》教學設計范文02-23
三角形內角和教學設計教案09-08