亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高一數學的教學計劃

時間:2023-04-01 15:44:52 教學計劃 我要投稿

高一數學的教學計劃(15篇)

  時光在流逝,從不停歇,成績已屬于過去,新一輪的工作即將來臨,是時候寫一份詳細的計劃了。什么樣的計劃才是好的計劃呢?下面是小編為大家整理的高一數學的教學計劃,歡迎大家分享。

高一數學的教學計劃(15篇)

高一數學的教學計劃1

  本節課的教學內容,是指數函數的概念、性質及其簡單應用。教學重點是指數函數的圖像與性質。

  I這是指數函數在本章的位置。

  指數函數是學生在學習了函數的概念、圖象與性質后,學習的第一個新的初等函數。它是一種新的函數模型,也是應用研究函數的一般方法研究函數的一次實踐。指數函數的學習,一方面可以進一步深化對函數概念的理解,另一方面也為研究對數函數、冪函數、三角函數等初等函數打下基礎。因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法應用的過程。

  指數函數模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應用,與我們的日常生活、生產和科學研究有著緊密的聯系,因此,學習這部分知識還有著一定的現實意義。

  Ⅱ.教學目標設置

  1。學生能從具體實例中概括指數函數典型特征,并用數學符號表示,建構指數函數的概念。

  2。學生通過自主探究,掌握指數函數的圖象特征與性質,能夠利用指數函數的性質比較兩個冪的大小。

  3。學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函數的一般方法。

  4。在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力。

  Ⅲ.學生學情分析

  授課班級學生為南京師大附中實驗班學生。

  1。學生已有認知基礎

  學生已經學習了函數的概念、圖象與性質,對函數有了初步的認識。學生已經完成了指數取值范圍的擴充,具備了進行指數運算的能力。學生已有研究一次函數、二次函數等初等函數的直接經驗。學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣。

  2。達成目標所需要的.認知基礎

  學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。

  3。難點及突破策略

  難點:1。 對研究函數的一般方法的認識。

  2。 自主選擇底數不當導致歸納所得結論片面。

  突破策略:

  1。教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段。

  2。組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思。

  3。對猜想進行適當地證明或說明,合情推理與演繹推理相結合。

  Ⅳ.教學策略設計

  根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,采用自主學習方式。通過教師引領學生經歷研究函數及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。

  學生的自主學習,具體落實在三個環節:

  (1)建構指數函數概念時,學生自主舉例,歸納特征,并用符號表示,討論底數的取值范圍,完善概念。

  (2)探究指數函數圖象特征與性質時,學生自選底數,開展自主研究,并通過匯報交流相互提升。

  (3)性質應用階段,學生自主舉例說明指數函數性質的應用。

  研究函數的性質,可以從形和數兩個方面展開。從圖形直觀和數量關系兩個方面,經歷從特殊到一般、具體到抽象的過程。借助具體的指數函數的圖象,觀察特征,發現函數性質,進而猜想、歸納一般指數函數的圖象特征與性質,并適時應用函數解析式輔以必要的說明和證明。

  Ⅴ.教學過程設計

  1。創設情境建構概念

  師:我們已經學習了函數的概念、圖象與性質,大家都知道函數可以刻畫兩個變量之間的關系。你能用函數的觀點分析下面的例子嗎?

  師:大家知道細胞分裂的規律嗎?(出示情境問題)

  [情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變量的關系?

  [情境問題2]某種放射性物質不斷變化為其他物質,每經過一年,這種物質剩余的質量是原來的84%。如果經過x年,該物質剩余的質量為y,如何描述這兩個變量的關系?

  [師生活動]引導學生分析,找到兩個變量之間的函數關系,并得到解析式y=2x和y=0。84x。

  師:這樣的函數你見過嗎?是一次函數嗎?二次函數?這樣的函數有什么特點?你能再舉幾個例子嗎?

  〖問題1類似的函數,你能再舉出一些例子嗎?這些函數有什么共同特點?能否寫成一般形式?

  [設計意圖]通過列舉生活中指數函數的具體例子,感受指數函數與實際生活的聯系。引導學生從具體實例中概括典型特征,初步形成指數函數的概念,并用數學符號表示。初步得到y=ax這個形式后,引導學生關注底數的取值范圍,完成概念建構。指數范圍擴充到實數后,關注x∈R時,y=ax是否始終有意義,因此規定a>0。a≠1并不是必須的,常函數在高等數學里是基本函數,也有重要的意義。為了使指數函數與對數函數能構成反函數,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。

  [師生活動]學生舉例,教師引導學生觀察,其共同特點是自變量在指數位置,從而初步建立函數模型y=ax。

  [教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便于引發對a的討論,但一般不會出現。進而提出這類函數一般形式y=ax。

  Ⅵ.教后反思回顧

  一、對于指數函數概念的認識

  指數函數是一種函數模型,其基本特征是自變量在指數位置。底數取值范圍有規定,使得這一模型形式簡單又不失本質。不必糾結于“y=22x是否為指數函數”,把重點放在概念的合理性的理解以及體會模型思想。

  二、對于培養學生思維習慣的考慮

  在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函數的性質有預判;從列表到作圖的過程中,都可以感受到指數函數單調性等性質;觀察并歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函數的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。

  三、關于設計定位的反思

  本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應采用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程。

高一數學的教學計劃2

  一、學生狀況分析

  學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。

  二、教材簡析

  使用人教版《普通高中課程標準實驗教科書?數學(A版)》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念。基本初等函數。函數的應用)。必修2有四章(空間幾何體。點線平面間的位置關系。直線與方程。圓與方程)。

  三、教學任務

  本期授課內容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成)。必修2在期末考試前完成(約在12月31日前完成)。

  四、教學質量目標

  1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。

  2、提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3、提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6、具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進目標達成的重點工作及措施

  重點工作:

  認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。

  分層推進措施:

  1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。

  2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性。注意運用對比的方法,反復比較相近的概念。注意結合直觀圖形,說明抽象的知識。注意從已有的知識出發,啟發學生思考。

  3、加強培養學生的邏輯思維能力和解決實際問題的.能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

  4、抓住公式的推導和內在聯系。加強復習檢查工作。抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  5、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。

  6、重視數學應用意識及應用能力的培養。

高一數學的教學計劃3

  本學期的措施及打算

  1.一周學習早知道。明確目標更能確定努力的方向。為了讓學生學習更有目的性,有效性和積極性,每周第一節課給出一周的教學進度,學習目標和過關要求。不僅老師要做到對所教內容清楚明了,也要讓學生對所學內容做到每周學習目標清晰化。

  2.落實“每周測試”過關制。周測內容與一周學習目標及一周的講授內容緊密相連。未盡力而又沒有過關的學生將按事先說明的措施給予處罰。以便讓學生重視課堂學習,重視平時作業,重視一周的學習過程。做到讓學生每周學習過程精細化。

  3.根據學生學力狀況進行分層次的培優補差。

  三、教學進度安排

  周次學習內容目標要求

  1必修4 第一章三角函數:第1至3節周期,角的.推廣及表示,弧度制及互化

  2軍訓

  3第4節:正弦函數單位圓,正弦函數定義,象限符號,誘導公式,五點法畫圖像,圖像及性質。

  4第5節:余弦函數,第6節正切函數余弦函數正切函數定義,象限符號,誘導公式,圖像及性質

  5第7節: 的圖像,第8節:同角的基本關系。圖像變換規律,同角三角函數的基本關系及其運用。章節復習,章節過關測試。

  6第二章:平面向量:第1節至第2節向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算

  7第3節至第5節數乘向量,基本定理,向量運算的鞏固訓練,平面向量的坐標表示及運算。數量積的應用。

  8第5節至第7節數量積的應用及坐標表示,向量應用舉例。習題課,章節復習,章節過關測試。

  9第三章:三角恒等變換:第1節至第2節兩角和差的公式得推導,記憶及靈活運用,二倍角公式得來源及運用。期中復習。

  10期中考試期中復習,期中考試。

  11第三章第3節:三角函數的簡單應用試卷講評改錯,簡單應用,三角恒等變換的綜合習題課,練習,章節復習,必修4基本測試。

  12“五。一”長假

  13必修3第一章:統計。第1節至第5節統計的程序,統計圖,統計方案設計,普查與抽樣,抽樣方法,分層抽樣與系統抽樣,花統計圖表及讀統計圖表,數字特征:平均數,中位數,眾數,級差,方差的意義及計算分析,

  14第6節至第9節樣本對總本的估計及相應的數字特征的計算分析,統計實踐活動,變量的相關性及例題分析,最小二乘估計。章節復習,章節過關測試。

  15第二章:算法初步:第1節至第3節基本思想,基本結構及設計,排序問題。

  16第4節:幾種基本語句條件語句,循環語句,復習三角函數的基本內容,章節復習,三角函數與算法初步過關測試。

  17第三章:概率:第1節至第2節頻率,概率,古典概率,概率計算公式。

  18第2節至第3節建概率模型,互斥事件,習題課,章節復習,章節過關測試。

  19期末復習

  20期末復習,期末考試

高一數學的教學計劃4

  一、具體目標:

  1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學

  二、本學期要達到的教學目標

  1.雙基要求:

  在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的.程序與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。

  2.能力培養:

  能運用數學概念、思想方法,辨明數學關系,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,并能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,并進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。

  3. 思想教育:

  三、進度授課計劃及進度表(略)

  高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級上學期數學教學計劃,希望大家喜歡。

高一數學的教學計劃5

  本學期擔任高一X1、X2兩班的數學教學工作,兩班學生共有X人,通過一期的高中學習,學習能力更加參差不齊,但兩個班的學生整體水平較高;部分學生學習習慣不好,不能正確評價自己,這給教學工作帶來了一定的難度,特別X1班部分同學學習方法問題嚴重:只做,不歸納總結,學習效率低。學校要求高,教學任務艱巨。為把本學期教學工作做好,制定如下教學工作計劃。

  一、教學目標.

  (一)情意目標

  (1)通過分析問題的方法的教學,培養學生的學習的興趣。

  (2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究三角函數、平面向量,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

  (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

  (6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。

  (二)能力要求

  1、培養學生記憶能力。

  (1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。

  (3)通過揭示弧度、向量有關概念、三角公式和三角函數的圖象,培養記憶能力。

  2、培養學生的運算能力。

  (1)通過三角函數求值與化簡問題的訓練,培養學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。

  (3)通過三角函數、平面向量的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數形結合,另辟蹊徑,提高學生運算能力。

  3、培養學生的思維能力。

  (1)通過對簡易邏輯的教學,培養學生思維的周密性及思維的邏輯性。

  (2)通過不等式、函數的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維能力。

  (3)通過三角函數、函數有關性質的引伸、推廣,培養學生的創造性思維。

  (4)加強知識的橫向聯系,培養學生的數形結合的能力。

  (5)通過典型例題不同思路的'分析,培養思維的靈活性,是學生掌握轉化思想方法。

  (三)知識目標

  二、教學要求

  (一)三角函數

  1理解任意角的概念、弧度的意義;能正確地進行弧度與角度的換算.

  2掌握任意角的正弦、余弦、正切的定義.并會利用與單位圓有關的三角函數線表示正弦、余弦和正切;了解任意角的余切、正割、余割的定義;掌握同角三角函數的基本關系式,掌握正弦、余弦的誘導公式.

  3.掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通過公式的推導,了解它們的內在聯系,從而培養邏輯推理能力

  4能正確運用三角公式,進行簡單三角函數式的化簡、求值及恒等式證明(包括引出半角、積化和差、和差化積公式,但不要求記憶).

  5.會用與單位圓有關的三角函數線畫正弦函數、正切函數的圖象.并在此基礎上由誘導公式畫出余弦函數的圖象;了解周期函數與最小正周期的意義;了解奇偶函數的意義;并通過它們的圖象理解正弦函數、余弦函數、正切函數的性質以及簡化這些函數圖象的繪制過程;會用“五點法”畫正弦函數、余弦函數和函數y=Asin(ωx+φ)的簡圖.理解A,ω、φ的物理意義.

  6.會由已知三角函數值求角.并會用符號arcsinx、arccosx、arctanx表示角。

  (二)平面向量

  1理解向量的概念,掌握向量的幾何表示,了解共線問量的概念

  2掌握向量的加法與減法

  3掌握實數與向量的積,理解兩個向量共線的充要條件

  4了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算.

  5掌握平面向量的數量積及其幾何意義,了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件

  6掌握平面兩點間的距離公式,掌握線段的定比分點和中點坐標公式,并能熟練運用;掌握平移公式

  7掌握正弦定理、余弦定理,并能運用它們解斜三角形,能利用計算器解決解斜三角形的汁算問題通過解三角形的應用的教學,繼續提高運用所學知識解決實際問題的能力

  8通過“實習作業解三角形在測量中的應用”,提高應用數學知識解決實際問題的能力和實際操作的能力

  9通過“研究性學習課題:向量在物理中的應用”,學會提出問題,明確探究方向,體驗數學活動的過程·培養創新精神和應用能力,學會交流.

  三、教學重點

  1、掌握同角三角函數的基本關系式

  2.掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五點法”畫正弦函數、余弦函數和函數y=Asin(ωx+φ)的簡圖。

  4.掌握向量的加法與減法,掌握平面向量的坐標運算.掌握實數與向量的積,理解兩個向量共線的充要條件。掌握正弦定理、余弦定理,并能運用它們解斜三角形

  四、教學難點

  1.函數y=Asin(ωx+φ)的簡圖

  2.會用與單位圓有關的三角函數線畫正弦函數、正切函數的圖象

  3.掌握正弦定理、余弦定理,并能運用它們解斜三角形

  五、工作措施.

  1、抓好課堂教學,提高教學效益。

  課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。

  (1)、扎實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題。

  (2)、加大課堂教改力度,培養學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,通過“知識的產生,發展”,逐步形成知識體系;通過“知識質疑、展活”遷移知識、應用知識,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,并大面積提高數學成績。

  2、加強課外輔導,提高競爭能力。

  課外輔導是課堂的有力補充,是提高數學成績的有力手段。

  (1)加強數學數學競賽的指導,提高學習興趣。

  (2)加強學習方法的指導,全方面提高他們的數學能力,特別是自主能力,并通過強化訓練,不斷提高解題能力,使他們的數學成績更上一城樓。

  (2)、加強對邊緣生的輔導。邊緣生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導邊緣生,通過個別加集體的方法,并定時單獨測試,面批面改,從而使他們的數學成績有質的飛躍。

  3、搞好單元考試、階段性考試的分析。

  學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。

  六、進度安排.

  第四章三角函數

  §4.1角的概念的推廣………………………………………………………………………………2課時

  §4.2弧度制…………………………………………………………………………………………2課時

  §4.3任意角的三角函數……………………………………………………………………………2課時

  §4.4同角三角函數的關系…………………………………………………………………………2課時

  §4.5誘導公式………………………………………………………………………………………2課時

  §4.6兩角和與差三角函數…………………………………………………………………………7課時

  §4.7二倍角公式……………………………………………………………………………………3課時

  §4.8三角函數的圖象與性質………………………………………………………………………4課時

  §4.9函數y=sin(ωx+φ)的圖象…………………………………………………………………3課時

  §4.10正切函數的圖象與性質………………………………………………………………………3課時

  §4.11給值求角………………………………………………………………………………………4課時

  第五章平面向量…………………

  §5.1向量……………………………………………………………………………………………1課時

  §5.2向量的加法及減法……………………………………………………………………………2課時

  §5.3實數與向量的積………………………………………………………………………………2課時

  §5.4平面向量的坐標運算…………………………………………………………………………2課時

  §5.5線段的定比分點………………………………………………………………………………2課時

  §5.6平面向量的坐標運算…………………………………………………………………………2課時

  §5.7平面向量的數量積及運算律…………………………………………………………………2課時

  §5.8平面向量數量積的坐標表示…………………………………………………………………2課時

  §5.9正弦定理、余弦定理…………………………………………………………………………2課時

  §5.10解斜三角形應用舉例…………………………………………………………………………2課時

  §5.11實習作業………………………………………………………………………………………2課時

  第六章不等式…………………

  §6.1不等式的性質…………………………………………………………………………………3課時

  §6.2均值定理………………………………………………………………………………………2課時

  §6.3不等式的證明…………………………………………………………………………………6課時

  §6.4不等式的解法…………………………………………………………………………………3課時

  期末復習20課時

高一數學的教學計劃6

  進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數學網特制定高一上學期數學函數的基本性質教學計劃模板。

  教材分析

  函數性質是函數的固有屬性,是認識函數的重要手段,而函數性質可以由函數圖象直觀的反應出來,因此,函數各個性質的學習要從特殊的、已知的圖象入手,抽象出此類函數的共同特征,并用數學語言來定義敘述。基于此,本節的概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。

  學情分析

  學生對函數概念重新認識之后,可以結合初中學過的簡單函數的圖象對函數性質進行抽象定義。另外,為了方便學生做題及熟悉函數性質,還需要補充一些函數圖象的知識,例如平移、二次函數圖象、含絕對值函數的圖象、反比例函數及其變形的函數圖象。總之,本節課的教學要從學生認知實際出發,堅持從圖象中來到圖象中去的原則。

  教學建議

  以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函數圖象指導學生做題。

 教學目標

  知識與技能

  (1)能理解函數單調性、最值、奇偶性的圖形特征

  (2)會用單調性定義證明具體函數的單調性;會求函數的最值;會用奇偶性定義判斷函數奇偶性

  (3)單調性與奇偶性的綜合題

  (4)培養學生觀察、歸納、推理的`抽象思維能力

  過程與方法

  (1)從觀察具體函數的圖像特征入手,結合相應問題引導學生一步步轉化到用數學語言形式化的建立相關概念

  (2)滲透數形結合的數學思想進行習題課教學

  情感、態度與價值觀

  (1)使學生學會認識事物的一般規律:從特殊到一般,抽象歸納

  (2)培養學生嚴密的邏輯思維能力,進一步規范學生用數學語言、數學符號進行表達

  課時安排

  (1)概念課:單調性2課時,最值1課時,奇偶性1課時

  (2)習題課:5課時

高一數學的教學計劃7

  一、指導思想

  準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。

  二、教學建議

  1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。

  2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。

  3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。

  4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。

  5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。

  三、教學內容

  第一章集合與函數概念

  1.通過實例,了解集合的含義,體會元素與集合的屬于關系。

  2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

  3.理解集合之間包含與相等的含義,能識別給定集合的子集。

  4.在具體情境中,了解全集與空集的含義。

  5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。

  6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。

  7.能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

  8.通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。

  9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。

  10.通過具體實例,了解簡單的分段函數,并能簡單應用。

  11.通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。

  12.學會運用函數圖象理解和研究函數的性質。

  課時分配(14課時)

  第二章基本初等函數(I)

  1.通過具體實例,了解指數函數模型的實際背景。

  2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。

  3.理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。

  4.在解決簡單實際問題過程中,體會指數函數是一類重要的函數模型。

  5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。

  6.通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性和特殊點。

  7.通過實例,了解冪函數的概念;結合函數的圖象,了解它們的變化情況。

  課時分配(15課時)

  第三章函數的應用

  1.結合二次函數的圖象,判斷一元二次方程根的`存在性及根的個數,從而了解函數的零點與方程根的聯系。

  根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。

  2.利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。

  3.收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。

  4.根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,采取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。

  課時分配(8課時)

3.1.1



方程的根與函數的零點



約1課時



10月25日



3.1.2



用二分法求方程的近似解



約2課時



10月26日27日



3.2.1



幾類不同增長的函數模型



約2課時



10月30日



|



11月3日



3.2.2



函數模型的應用實例



約2課時





小結



約1課時



  考生只要在全面復習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規范答題,一定會穩中求進,取得優異的成績。

高一數學的教學計劃8

  一、基本情況分析

  任教153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術班有男生23人,女生21人,并且有音樂生8人。兩個班基礎差,學習數學的興趣都不高。

  二、指導思想

  準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。

  三、教學建議

  1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。

  2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的.基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。

  3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。

  4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。

  5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。

  6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。

  四、教研課題

  高中數學新課程新教法

  五。教學進度

  第一周 集 合

  第二周 函數及其表示

  第三周 函數的基本性質

  第四周 指數函數

  第五周 對數函數

  第六周 冪函數

  第七周 函數與方程

  第八周 函數的應用

  第九周 期中考試

  第十十一周 空間幾何體

  第十二周 點,直線,面之間的位置關系

  第十三十四周 直線與平面平行與垂直的判定與性質

  第十五十六周 直線與方程

  第十八十九周 圓與方程

  第二十周 期末考試

高一數學的教學計劃9

  Ⅰ.教學內容解析

  本節課的教學內容,是指數函數的概念、性質及其簡單應用.教學重點是指數函數的圖像與性質.

  這是指數函數在本章的位置.

  指數函數是學生在學習了函數的概念、圖象與性質后,學習的第一個新的初等函數.它是一種新的函數模型,也是應用研究函數的一般方法研究函數的一次實踐.指數函數的學習,一方面可以進一步深化對函數概念的理解,另一方面也為研究對數函數、冪函數、三角函數等初等函數打下基礎.因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法應用的過程.

  指數函數模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應用,與我們的日常生活、生產和科學研究有著緊密的聯系,因此,學習這部分知識還有著一定的現實意義.

  Ⅱ.教學目標設置

  1.學生能從具體實例中概括指數函數典型特征,并用數學符號表示,建構指數函數的概念.

  2.學生通過自主探究,掌握指數函數的圖象特征與性質,能夠利用指數函數的性質比較兩個冪的大小.

  3.學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函數的一般方法.

  4.在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力.

  Ⅲ.學生學情分析

  授課班級學生為南京師大附中實驗班學生.

  1.學生已有認知基礎

  學生已經學習了函數的概念、圖象與性質,對函數有了初步的認識.學生已經完成了指數取值范圍的擴充,具備了進行指數運算的能力.學生已有研究一次函數、二次函數等初等函數的直接經驗.學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣.

  2.達成目標所需要的認知基礎

  學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力.

  3.難點及突破策略

  難點:1. 對研究函數的一般方法的認識.

  2. 自主選擇底數不當導致歸納所得結論片面.

  突破策略:

  1.教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段.

  2.組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思.

  3.對猜想進行適當地證明或說明,合情推理與演繹推理相結合.

  Ⅳ.教學策略設計

  根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,采用自主學習方式.通過教師引領學生經歷研究函數及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段.

  學生的自主學習,具體落實在三個環節:

  (1)建構指數函數概念時,學生自主舉例,歸納特征,并用符號表示,討論底數的取值范圍,完善概念.

  (2)探究指數函數圖象特征與性質時,學生自選底數,開展自主研究,并通過匯報交流相互提升.

  (3)性質應用階段,學生自主舉例說明指數函數性質的應用.

  研究函數的性質,可以從形和數兩個方面展開.從圖形直觀和數量關系兩個方面,經歷從特殊到一般、具體到抽象的過程。借助具體的指數函數的圖象,觀察特征,發現函數性質,進而猜想、歸納一般指數函數的圖象特征與性質,并適時應用函數解析式輔以必要的說明和證明.

  Ⅴ.教學過程設計

  1.創設情境建構概念

  師:我們已經學習了函數的概念、圖象與性質,大家都知道函數可以刻畫兩個變量之間的關系.你能用函數的觀點分析下面的例子嗎?

  師:大家知道細胞分裂的規律嗎?(出示情境問題)

  [情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變量的關系?

  [情境問題2]某種放射性物質不斷變化為其他物質,每經過一年,這種物質剩余的質量是原來的84%.如果經過x年,該物質剩余的質量為y,如何描述這兩個變量的關系?

  [師生活動]引導學生分析,找到兩個變量之間的函數關系,并得到解析式y=2x和y=0.84x.

  師:這樣的函數你見過嗎?是一次函數嗎?二次函數?這樣的函數有什么特點?你能再舉幾個例子嗎?

  〖問題1類似的函數,你能再舉出一些例子嗎?這些函數有什么共同特點?能否寫成一般形式?

  [設計意圖]通過列舉生活中指數函數的具體例子,感受指數函數與實際生活的聯系.引導學生從具體實例中概括典型特征,初步形成指數函數的概念,并用數學符號表示.初步得到y=ax這個形式后,引導學生關注底數的取值范圍,完成概念建構.指數范圍擴充到實數后,關注x∈R時,y=ax是否始終有意義,因此規定a>0.a≠1并不是必須的,常函數在高等數學里是基本函數,也有重要的意義.為了使指數函數與對數函數能構成反函數,規定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”.

  [師生活動]學生舉例,教師引導學生觀察,其共同特點是自變量在指數位置,從而初步建立函數模型y=ax.

  [教學預設]學生能舉出具體的例子——y=3x,y=0.5x….如出現y=(-2)x最好,更便于引發對a的討論,但一般不會出現.進而提出這類函數一般形式y=ax.

  方案1:

  生:(舉例)函數y=3x,y=4x,…(函數y=ax(a>1))

  師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數非得大于1嗎?)

  生:函數y=0.5x,y= x,y=(-2)x,y=1x…

  師:板書學生舉例(停頓),好像有不同意見.

  生:底數不能取負數.

  師:為什么?

  生:如果底數取負數或0,x就不能取任意實數了.

  師:我們已經將指數的取值范圍擴充到了R,我們希望這些函數的定義域就是R.

  (若沒有學生注意到底數的取值范圍,可引導學生關注例舉函數的定義域.若有同學提出情境中函數的定義域應為N+,師:我們已經將指數的取值范圍擴充到了R,函數y=2x和y=0.84x中,能否將定義域擴充為R?你們所舉的例子中,定義域是否為R?)

  師:這些函數有什么共同特點?

  生:都有指數運算.底數是常數,自變量在指數位置.

  (若有學生舉出類似y=max的例子,引導學生觀察,它依然具有自變量在指數位置的特征.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函數模型y=ax,初步體會基本初等函數的作用.)

  師:具備上述特征的函數能否寫成一般形式?

  生:可以寫成y=ax(a>0).

  師:當a=1時,函數就是常數函數y=1.對于這個函數,我們已經比較了解了.通常我們還規定a≠1.今天我們就來了解一下這個新函數.(出示指數函數定義)

  方案2:

  生:(舉例)函數y=3x,y=4x,…(函數y=ax(a>1))

  師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數非得大于1嗎?)

  生:函數y=0.5x,y= x,…

  師:這些函數的自變量是什么?它們有什么共同特點?

  生:(可用文字語言或符號語言概括)都有指數運算.底數是常數,自變量在指數位置.可以寫成y=ax.

  師:y=ax中,自變量是x,底數a是常數.以上例子的不同之處,是底數不同.那你覺得底數的取值范圍是什么呢?

  生:底數不能取負數.

  師:為什么?

  生:如果底數取負數或0,x就不能取任意實數了.

  師:為了研究的方便,我們要求底數a>0.當a=1時,函數就是常數函數y=1.對于這個函數,我們已經比較了解了.通常我們還規定a≠1.今天我們就來了解一下這個新函數.(出示指數函數定義)

  [階段小結]一般地,函數y=ax(a>0且a≠1)稱為指數函數.它的定義域是R.

  [意圖分析]概念教學應當讓學生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項注意”的做法剝奪了學生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數函數等細枝末節.指數函數的基本特征是自變量出現在指數上,應促使學生對概念本質的理解.指數函數概念的.形成,經歷了一個由粗到細,由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認知心理.

  2.實驗探索匯報交流

  (1)構建研究方法

  師:我們定義了一個新的函數,接下來,我們研究什么呢?

  生:研究函數的性質.

  〖問題2你打算如何研究指數函數的性質?

  [設計意圖]學生已經學習了函數的概念、函數的表示方法與函數的一般性質,對函數有了初步的認識.在此認知基礎上,引導學生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發.教師應充分尊重學生的思維個性,提供自主探究的平臺,通過匯報交流活動達成共識實現殊途同歸.中學階段,特別是高一新授課階段,提倡學生以形象思維作為抽象思維的支撐.

  [師生活動]師生經過討論,解決啟發性提示問題,確定研究的內容與方法.

  [教學預設]學生能夠根據已有知識和經驗,在教師的啟發引導下,明確研究的內容以及研究的方法.部分學生會提出先作出具體函數圖象,觀察圖象,概括性質,并進而歸納出一般函數的圖象的分布特征等性質.另一部分學生可能從具體函數的解析式出發,研究函數性質,猜想一般函數的性質,然后再作出圖象加以驗證.

  師:(稍等片刻)我們一般要研究哪些性質呢?

  生:變量取值范圍(定義域、值域)、單調性、奇偶性.

  師:(板書學生回答)怎樣研究這些性質呢?

  生:先畫出函數圖象,觀察圖象,分析函數性質.

  生:先研究幾個具體的指數函數,再研究一般情況.

  師:板書“畫圖觀察”,“取特殊值”

  (若沒有學生提出從特殊到一般的思路.師:底數a的取值不同,函數的性質可能也會有不同.一次函數y=kx(k≠0)中,一次項系數k不同,函數性質就不同.底數a可以取無數多個值,那我們怎么辦呢?)

  (若有學生通過對y=2x解析式的分析,得到了性質,并提出從具體函數的解析式出發,研究函數性質,猜想一般函數的性質,然后再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導學生從具體指數函數圖象入手.))

  [意圖分析]學習的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學生提供由自己提出問題、確定研究方法的機會,逐漸學會研究問題,促進能力發展.

  (2)自主探究匯報交流

  師:我們確定了要研究的對象和具體做法,下面可以開始研究指數函數的性質了.

  〖問題3選取數據,畫出圖象,觀察特點,歸納性質.

  [設計意圖]若直接規定底數取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據底數的大小分類討論,缺乏合理的解釋,學生對于圖象的認識是被動的.若在探究前經討論確定底數取值,由于學生認知水平的差異,仍可能會造成部分學生被動接受.學生自主選擇底數,雖有得到片面認識的可能,但通過討論交流,學生能相互驗證結論,仍能得到正確認識.并且學生能在過程中體會數據如何選擇,了解研究方法.

  由于描點作圖時列舉點的個數的限制,學生對x→∞時函數圖象特征缺乏直觀感受.而且由于所舉例子個數的限制,學生對于歸納的結論缺乏一般性的認識.教師應利用繪圖軟件作出底數連續變化的圖象 ,驗證猜想.

  數形結合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節課的重點是通過對指數函數圖象性質的研究,總結研究函數的一般方法,應充分發動學生參與研究的每個過程,得到直接體驗.

  [師生活動]學生選取不同的a的值,作出圖象,觀察它們之間的異同,總結指數函數的圖象特征與函數性質.

  [教學預設]學生通過觀察圖象,發現指數函數y=ax(a>0且a≠1)的性質.教師用實物投影儀展示學生所畫圖象,學生根據具體函數圖象說明具體函數性質.在學生說明過程中,教師引導學生對結論進行適當的說明,進而引導學生歸納一般指數函數的性質.教師引導學生關注列表描點作圖的過程,引導學生通過反思過程,并通過動態圖象驗證猜想,促進學生體會數形結合的分析方法.教師尊重生成,但需引導學生區別指數函數本身的性質與指數函數之間的性質.其中⑥⑦不強加于學生.對于⑥,要引導學生在同一坐標系中畫出圖象,啟發學生觀察底數互為倒數的指數函數的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學生提出利用不同底數指數函數圖象解決,可順勢利導,也可布置為課后作業,繼續研究.

  生:自主選擇數據,在坐標紙上列表作圖,列出函數性質.

  師:(巡視,必要時參與討論,及時提示任務,待大部分學生有結論后,鼓勵學生交流,請學生匯報.)有條理地整理一下結論,討論交流所得.(同時用實物投影儀展示學生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

  生:(可能出現的情況)(1)在兩個坐標系中畫圖;(2)所取底數均大于1;(3)兩個底數大于1,一個底數小于1;(4)關于y軸對稱的兩個指數函數.

  師:(過程性引導)底數你是怎么取的?你是怎樣觀察出結論的?在列表過程中,你有什么發現嗎?為什么要在兩個坐標系中畫圖?為什么不也取兩個底數小于1?

  師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?

  生:指數函數是單調遞增的,過定點(0, 1).

  師:(引導學生規范表述,并板書)指數函數在(-∞, +∞)上單調遞增,圖象過定點(0, 1).

  師:指數函數還有其它性質嗎?

  師:也就是說值域為(0, +∞).

  生:指數函數是非奇非偶函數.

  師:有不同意見嗎?

  生:當0

  (其它預設:

  (1)當a>1時,若x>0,則y>1;若x<0,則y<1.

  當00,則y<1;若x<0 y="">1.

  (2)學生畫出y=2x和y=3x圖象,得出函數遞增速度的差異.

  (3)畫出y=2x和y=0.5x圖象,得到底數互為倒數的指數函數圖象關于y軸對稱.)

  師:(板書學生交流結果,整理成表格.注意區分“函數性質”與“函數之間的關系”.若有學生試圖說明結論的合理性,可提供機會.)大家認為底數a>1或0

  [階段小結] 指數函數y=ax(a>0且a≠1)具有以下性質:

  ①定義域為R.

  ②值域為(0, +∞).

  ③圖象過定點(0, 1).

  ④非奇非偶函數.

  ⑤當a>1時,函數y=ax在(-∞, +∞)上單調遞增;

  當0

  ⑥函數y=ax與y=()x (a>0且a≠1)圖象關于y軸對稱.

  ⑦指數函數y=ax與y=bx(a>b)的圖象有如下關系:

  x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;

  x=0時,兩圖象相交;

  x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.

  [意圖分析]通過探究活動,使學生獲得對指數函數圖象的直觀認識.學生觀察圖象,是對圖形語言的理解;根據圖象描述性質,是將圖形語言轉化為符號或文字語言.對函數的理解,是建立在三種語言相互轉化的基礎上的.在交流匯報過程中,一方面要通過對探究較深入學生的具體研究過程的剖析,總結提升學習方法,優化學習策略;另一方面要關注部分探究意識與能力都薄弱的學生的表現,鼓勵他們大膽發言,激勵他們主動參與活動,讓全體學生成為真正的學習主體.自主探究活動能充分激發學生的相互學習能力,能有效幫助學生突破難點.

  3.新知運用鞏固深化

  (方案一)(分析函數性質的用途)

  師:現在我們了解了指數函數的定義和性質,它們有什么用處呢?

  師:函數的定義域是函數的基礎,是運用性質的前提.值域是研究函數最值的前提.具備奇偶性的函數,可以利用對稱性簡化研究.指數函數過定點(0, 1),說明可以將常數1轉化為指數式,即1=20=30=…那么函數單調性有什么用呢?

  生:可以求最值,可以比較兩個函數值的大小.

  師:那你能舉出運用指數函數單調性比大小的例子嗎?(提示:既然是運用指數函數單調性,那應該有指數式.)

  生:(舉例并判斷大小.)

  師:你考察了哪個指數函數?怎么想到的?(規范表述)

  師:以往我們計算出冪的值來比大小,現在我們指數函數的單調性,不用計算就可以比較兩個冪的大小.(出示例1)

  (方案二)

  師:現在我們了解了指數函數的定義和性質,它們有什么用處呢?

  師:(口述并板書)你能比較32與33的大小嗎?

  生:直接計算比較.

  師:那比較30.2與30.3的大小呢?能不能不計算呢?

  生:利用函數y=3x的單調性.

  師:能具體說明嗎?(引導學生規范表達)我們再試一試.

  (出示例1)

  【例1】比較下列各組數中兩個值的大小:

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [設計意圖] 引導學生運用指數函數性質.對于 32與33的大小比較,學生更可能計算出冪的值直接比較.變式后,學生可能作差或作商比較,轉化為比較30.1與1的大小,進而運用指數函數單調性,也可能直接運用單調性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.

  [師生活動]學生板演,教師組織學生點評.

  [教學預設] ①②兩題,學生能運用指數函數單調性解決.②題學生可能得到錯誤答案,教師可組織相互點評,規范表達,正確運用性質.③學生可能運用不同方法,應給予充分的時間,并在具體問題解決后引導學生總結一般方法.

  師:(引導學生規范表達)你考察了哪個指數函數?根據函數的什么性質?

  師:(對③的引導)你考慮利用哪個函數?是y=1.5x還是y=0.8x?這兩個函數有什么關聯?(引導學生畫出圖象,從形上提示:圖象有什么關聯?)

  生:它們都過點(0, 1).

  師:也就是說,可以將1轉化為指數形式,即1=1.50=0.80.那接下來呢?

  生:比較1.50.3,0.81.2和1的大小.

  師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現在我們指數函數的單調性,不用計算就可以比較兩個冪的大小.

  【例2】

  ①已知3x≥30.5,求實數x的取值范圍;

  ②已知0.2x<25,求實數x的取值范圍.

  [設計意圖]指數函數單調性的逆用,同時考查指數函數的定義域.

  4.概括知識總結方法

  〖問題4本節課我們學習了哪些知識?你還學會了哪些方法?

  [設計意圖] 回顧所學內容,深化認知.開放式小結,不同學生有不同的收獲.

  [師生活動]學生發言總結,交流所得.

  [教學預設]

  通過本節課對指數函數圖象和性質的研究,我們獲得了以下知識和方法:

  ①指數函數的定義與性質;

  ②研究函數的一般方法和步驟.

  師:本節課我們學習了什么知識?

  生:指數函數的定義和性質.

  師:回顧我們的研究過程,我們是怎樣研究指數函數的?

  生:先確定研究的內容:定義域、值域、單調性、奇偶性和其它性質.

  生:然后從幾個具體的指數函數開始,畫出圖象,列出性質,最后得到一般情況.

  師:這是一種從特殊到一般的研究方法.研究指數函數的方法,也是研究函數的一般方法,今后我們還會運用這樣的方法研究新的函數.

  [意圖分析]課堂總結不是對所學知識的簡單回顧,應讓學生在知識、方法和策略上多層次地整理,促進學生理解所用學習方法的合理性與普遍性,使學生獲得知識與能力的共同進步.

  5.分層作業,因材施教

  (1)感受理解:課本第54頁,習題2.2(2):1,2,3,4;

  (2)思考運用:運用今天的研究方法,你還能得到指數函數的其它性質嗎?

  [設計意圖]分層布置作業,“感受理解”面向全體學生,旨在掌握指數函數的圖象與性質.“思考運用”提供學生運用函數研究的一般方法自主研究的機會.

  Ⅵ.教后反思回顧

  一、對于指數函數概念的認識

  指數函數是一種函數模型,其基本特征是自變量在指數位置.底數取值范圍有規定,使得這一模型形式簡單又不失本質.不必糾結于“y=22x是否為指數函數”,把重點放在概念的合理性的理解以及體會模型思想.

  二、對于培養學生思維習慣的考慮

  在學生自主探索的過程中,教師應注意培養學生良好的思維習慣.實際上,選擇底數a的數據的大小和數量,需要對指數函數的性質有預判;從列表到作圖的過程中,都可以感受到指數函數單調性等性質;觀察并歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣.對所歸納的指數函數的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明.學生不僅學到了數學知識,也初步體驗了研究問題的基本方法.

  三、關于設計定位的反思

  本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應采用不同的教學策略.如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程.、

高一數學的教學計劃10

  本學期的數學教學內容是必修4包括第一章《三角函數》和第二章《平面向量》。按照數學教學大綱的要求,必修4教學需要36個課時(不包含考試與測驗 的時間);第五章的教學需要22個課時,共計需要58個課時。必修3需要30個課時。 本學期有兩次月考和五一長假,實際授課時間為18周,按每周5.5課時計算,數學課時達到93課時左右,時間比較充足。這為我們數學組全面貫徹低切入、 慢節奏的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。

  教學計劃:

  依據年級備課組的高一數學教學進度安排,本學期的期中考試(5月上旬進行)涵蓋的內容為必修3與三角函數前面內容,三角函數將在上半學期講授,這樣下半個學期的教學任務為38個課時,完成三角剩內容與平面向量的教學,及整個學期的復習。

  一、指導思想

  本學期高一備課組以學校工作計劃為指導,以提高教學質量為目標,以優化課堂教學為中心,團結合作,努力提高思想素質和業務素質,團結合作,互相學習,認真 備好課,上好每一節課,并結合新教材的特點,開展研究性學習的活動,在教學中,抓好基礎知識教學,著重學生能力的培養,打好基礎,全面提高,為來年高考作 好充分的準備,爭取優異的成績。

  二、教學目標.

  (一)情意目標

  (1)通過分析問題的`方法的教學,培養學生的學習的興趣。

  (2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。

  (3)在探究三角函數的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

  (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

  (6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。

  (二)能力要求

  1、培養學生記憶能力。

  (1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。

  (2)通過揭示三角函數有關概念、公式和圖形的對應關系,培養記憶能力。

  2、培養學生的運算能力。

  1)通過概率的訓練,培養學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。

  (3)通過算法初步,1算法步驟2程序框圖(起始框,判斷框,附值框,)3silab語言(順序,條件語句,循環語句)。第二部分,統計,第三步分,概率,古典概型,幾何概型。的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數形結合,另辟蹊徑,提高學生運算能力。

  三、 具體措施

  1.期中考前上好第一冊(必修3),期中考后完成好必修4

  2.抓好數學補差,培優活動 各班在星期1或星期4的下午

  3.立足于教材。

  4.要求學生完成課后練習及每一章課后習題

  5、繼續學習《現代教育技術》,努力學習多媒體課件的制作。

  6、繼續認真開展師徒結對活動,以老帶新。師徒間經常聽課交流,認真評課。集中備課,共同商討教材等。

  7、抓好競賽輔導,

  8、段統一考試在周日或者周三的晚自修時間,每隔2周考一次;

  9、響應學校教務處的備課計劃安排,督促組員落實工作;

  10、抓好集體備課

高一數學的教學計劃11

  本節課在教材中的地位和作用:《不等式的基本性質》,對即將要學習的一元一次不等式的解法乃至高中的不等式的運用都是非常重要的基礎。本節內容掌握的好壞,將直接影響到后面的教學內容。而對于不等式的基本性質1和2,相信絕大部分的學生都不會有很大困難,而不等式的基本性質3,通過對以往學生的了解,發現很多學生會忘記分正負兩種情況,因此在本節新課教學中,我采用了將不等式未知的性質與等式已知的性質進行類比教學,讓學生自己去發現驗證不等式的性質。

  一、教學目標:

  (一)知識與技能

  1.掌握不等式的三條基本性質。

  2.運用不等式的基本性質對不等式進行變形。

  (二)過程與方法

  1.通過等式的性質,探索不等式的性質,初步體會“類比”的數學思想。

  2.通過觀察、猜想、驗證、歸納等數學活動,經歷從特殊到一般、由具體到抽象的認知過程,感受數學思考過程的條理性,發展思維能力和語言表達能力。

  (三)情感態度與價值觀

  通過探究不等式基本性質的活動,培養學生合作交流的意識和大膽猜想,樂于探究的良好思維品質。

  二、教學重難點

  教學重點: 探索不等式的三條基本性質并能正確運用它們將不等式變形。

  教學難點: 不等式基本性質3的探索與運用。

  三、教學方法:自主探究——合作交流

  四、教學過程:

  情景引入:1.舉例說明什么是不等式?

  2.判斷下列各式是否成立?并說明理由。

  ( 1 )若x-4=12, 則x=16()

  ( 2 )若3x=12, 則 x=4()

  ( 3 )若x-4>12 則 x>16()

  ( 4 )若3x>12則 x>4()

  【設計意圖】(1)、(2)小題喚起對舊知識等式的基本性質的回憶,(3)、(4)小題引導學生大膽說出自己的想法。通過復習既找準了舊知停靠點,又創設了一種情境,給學生提供了類比、想象的空間,為后續學習做好了鋪墊。

  教師導語:當我們開始研究不等式的時候,自然會聯想到它是否與等式有相類似的性質。這節課我們就通過類比來探究不等式的基本性質。

  溫故知新

  問題1.由等式性質1你能猜想一下不等式具有什么樣的性質嗎?

  等式性質1:等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。

  估計學生會猜:不等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。教師引導:“=”沒有方向性,所以可以說所得結果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應該重點研究它在方向上的變化。

  問題2.你能通過實驗、猜想,得出進一步的結論嗎?

  同桌同學通過實例驗證得出結論,師生共同總結不等式性質1。

  問題3.你能由等式性質2進一步猜想不等式還具有什么性質嗎?

  等式性質2:等式兩邊都乘或除以同一個數(除數不能是0),等式依然成立。

  估計學生會猜:不等式兩邊都乘或除以同一個數(除數不能是0),不等號的方向不變。

  你能和小伙伴一起來驗證你們的猜想嗎?(教師鼓勵學生實踐是檢驗真理的唯一標準。)

  學生在小組內合作交流,發現了在不等式兩邊都乘或除以同一個數時,不等號的'方向會出現兩種情況。教師進一步引導學生通過分析、比較探索規律,從而形成共識,歸納概括出不等式性質2和3。

  【設計意圖】猜想作為教學的出發點,啟發學生積極思維,探索規律,讓學生在“做”數學中學數學,真正成為學習的主人。

  問題4.在不等式兩邊都乘0會出現什么情況?

  問題5.如果a、b、c表示任意數,且a

  【設計意圖】把文字語言轉化為數學語言,是數學學習中的一項基本能力,這里有意識地進行滲透,指導學生先作變形再填不等號,對字母c的取值進行討論,培養學生的分類意識,對培養學生的思維能力有十分重要的意義。

  【想一想】不等式的基本性質與等式的基本性質有什么相同之處,有什么不同之處?

  學生思考,獨立總結異同點。

  【設計意圖】引導學生把二者進行比較,有助于加深對不等式基本性質的理解,促成知識的“正遷移”。

  綜合訓練:你能運用不等式的基本性質解決問題嗎?

  1、課本62頁例3

  教師引導學生觀察每個問題是由a>b經過怎樣的變形得到的,應該應用不等式的哪條基本性質。由學生思考后口答。

  【設計意圖】對學生進行推理訓練,讓學生明白,敘述要有根據,進一步提高學生的邏輯思維能力和語言表達能力。

  2、你認為在運用不等式的基本性質時哪一條性質最容易出錯,應該怎樣記住?

  【設計意圖】及時進行學習反思,總結經驗,通過相互評價學習效果,及時發現問題、解決知識盲點,培養學生的創新精神和實踐能力。

  3.小明的困惑:

  小明用不等式的基本性質將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?

  小明可糊涂了……聰明的同學,你能告訴小軍他究竟錯在什么地方嗎?同桌討論。

  【設計意圖】通過替人排憂解難,強化對不等式三個基本性質的理解與運用,突出重點,突破難點。

  4.火眼金睛

  ①a>2, 則3a___2a

  ②2a>3a,則 a ___ 0

  【設計意圖】通過變式訓練,加深學生對新知的理解,培養學生分析、探究問題的能力。

  課堂小結:

  這節課你有哪些收獲?有何體會?你認為自己的表現如何?教師引導學生回顧、思考、交流。

  【設計意圖】回顧、總結、提高。學生自覺形成本節的課的知識網絡。

  思考題:你來決策

  咱們班的王帥同學準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學考慮一下選擇哪家旅行社更合算嗎?

  【設計意圖】利用所學的數學知識,解決生活中的問題,加強數學與生活的聯系,體驗數學是描述現實世界的重要手段。既培養了學生用數學知識解決實際問題的能力,又樹立了學好數學的信心。

高一數學的教學計劃12

  一、指導思想:

  在學校教學工作意見指導下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。

  二、教材簡析

  本學期仍然使用人教版《普通高中課程標準實驗教科書·數學(A版)》教材,在堅持我校數學教育優良傳統的前提下,在學生九年義務教育數學課程的基礎上,進一步提高學生所必要的數學素養,以滿足學生的發展與社會進步的需要,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。

  三、教學任務

  本學期授課內容:必修一、必修二

  四、學生基本情況及教學目標

  學生基本情況:本屆學生普遍基礎較差,學習自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。其次,學生的計算能力太差,學生不喜歡去算題,嫌麻煩,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,因為學生底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

  教學目標:認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。高一學生共有20個班,分兩個教學層次,每層個10個班。實驗班的學生可根據實際情況提高教學目標。平行班學生的主要任務有兩點,第一點:保證重點學生的數學成績穩步上升,成為學生的優勢科目;第二點:加強數學學習比較困難學生的輔導培養,增加其信息并逐步縮小數學成績差距。

  五、教法分析:

  1、選取與內容密切相關的,典型的,豐富的和學生熟悉的課堂素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以達到培養其興趣的目的。

  2、通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的'學習方式。 3、在教學中引導學生通過類比,推廣,特殊化,化歸等方法,盡可能培養學生邏輯思維的習慣。

  六、教學措施:

  1、認真落實,搞好集體備課。每周進行一次集體備課。各位老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的練習活頁。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。

  2、詳細計劃,保證練習質量。教學中用配備資料《導學案》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容“滾動式”編一份練習試卷,學生完成后老師要收齊批改,對存在的普遍性問題要安排時間講評。

  3、抓好第二課堂,穩定數學優生,培養數學能力興趣。尖尖班的教學進度可適當調整,教學難度要有所提升;其他各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。備課組也將組織學生上培優班。

  4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。

  附:教學進度計劃

  第一周集合

  第二周函數及其表示

  第三周函數的基本性質

  第四周指數函數

  第五周對數函數

  第六周冪函數

  第七周函數與方程

  第八周函數的應用

  第九周期中考試

  第十至十一周空間幾何體

  第十二周點,直線,面之間的位置關系

  第十三至十四周直線與平面平行與垂直的判定與性質

  第十五至十六周直線與方程

  第十七至十八周周圓與方程

  第十九至二十周期末考試

高一數學的教學計劃13

  教學計劃可以幫助教師理清教學思路,提高課堂效率。

  ●教學目標

  (一)教學知識點

  1.了解全集的意義.

  2.理解補集的概念.

  (二)能力訓練要求

  1.通過概念教學,提高學生邏輯思維能力.

  2.通過教學,提高學生分析、解決問題能力.

  (三)德育滲透目標 滲透相對的觀點.

  ●教學重點 補集的概念.

  ●教學難點

  補集的'有關運算.

  ●教學方法 發現式教學法 通過引入實例,進而對實例的分析,發現尋找其一般結果,歸納其普遍規律.

  ●教具準備

  第一張:(記作1.2.2 A)

  ●教學過程 Ⅰ.復習回顧

  1.集合的子集、真子集如何尋求?其個數分別是多少? 2.兩個集合相等應滿足的條件是什么?

  Ⅱ.講授新課 [師]事物都是相對的,集合中的部分元素與集合之間關系就是部分與整體的關系.

  請同學們由下面的例子回答問題: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分

  由此借助上圖總結規律如下: 投影片:(1.2.2 B)

  Ⅳ.課時小結

  1.能熟練求解一個給定集合的補集.

  2.注意一些特殊結論在以后解題中的應用. Ⅴ.課后作業

高一數學的教學計劃14

  一、活動開展情景

  在我縣,今年的教學主體是“有效教學”,為此,我組在開展教研活動時也是緊緊圍繞這一主題進行開的。在本學期內,我組主要開展過以下活動:

  1、備課。本學期備課的形式主要是一個人備課為主,團體備課為輔。具體流程為個人備課→團體備課→個人備課,簡稱三級備課。

  2、公開課。本學期的公開課主要是以每位教師不低于一次公開課的標準來執行的。公開課的開展形式與以往也有所不一樣,以往的公開課僅有聽課和評課兩個環節,忽視了說課環節。但本學期卻是把以往忽視了的說課環節也補上了,流程上將說課環節放在課前,構成了課前說課→聽課授課→評課議課的模式。

  3、課賽。本學期我組共參加過校外課賽一人次,獲得三等獎一人次。校內不設課賽活動。

  4、示范課。本學期我組上過示范課共計四人次,校內示范課三人次,校外示范課1人次。

  5、數學競賽。本學期我組共組織開展過數學競賽一次,參賽學生達50余人,占全校學生總數的近10%。向學校申請獲得專項資金710元,受益學生37人。頒發“優秀輔導教師”榮譽稱號三人次。

  6、學校文化建設。本學期我組特向學校申請宣傳欄展板一塊(近3平方米),在宣傳和展示我組的相關活動照片以及文件精神的同時,也在完善我校的學校文化建設。

  7、階段性教學質量反饋座談會。本學期共開展過兩次這類會議。

  8、其他活動。外出培訓學習四人次,網絡培訓學習6人次。全組成員外出交流學習兩次,其他派代表外出交流學習三次。

  二、活動成效

  1、促進了教師隊伍的建設和完善。本學期我組教師在以團隊合作及個人努力拼搏相得益彰的結合下,經過以上一系列的活動加強了師師之間、師生之間、生生之間的溝通協調,再加以學校對本組的大力支持,本學期我組對教師隊伍的建設取得了必須的成效。

  2、開拓了教師的視野,提升了團隊的師資力量。經過外出培訓學習,網絡學習以及與其他學校開展教研交流活動,不但開拓了我組教師的視野,同時也提升了我組教師的專業素養。

  3、促進教師的個人成長與團隊合作精神。經過開展團體備課、公開課、示范課以及課賽等活動,不但促進了我組教師的個人成長,同時也加強了我組的'團隊合作精神。

  4、構成了良好的競爭觀念和大局意識。經過開展課賽活動和設立“優秀輔導教師”獎,在團隊之間有了競爭觀念,同時也經過績效的捆綁使得組內成員有了大局意識。

  三、存在問題

  1、缺乏領導藝術和管理本事。在我校數學組成員中,我屬最年輕的數學教師之一,自然在管理的過程中對很多老教師心存芥蒂,這是心理隔閡問題;很難做到在對老教師十分尊重的同時又讓他們對自我的主張很服從,這是本事問題,也是領導藝術問題;很難做到讓年輕教師彰顯個性的同時又讓他們能夠嚴格約束自我,這是溝通問題。

  2、個人精力有限。本人在擔任我校數學教研組的同時還承擔著兩個畢業班的數學教學工作和一個畢業班的班主任工總,工作任務較為繁重。所以,各項工作難免會出現百密而一疏的漏洞。

  3、缺乏組織和管理實踐經驗。參加工作才一年半就開始擔任這樣的職務,組織管理一群比自我大的成年人,這是零起點,無從談及組織和管理經驗。唯有摸著石頭過河,邊工作邊總結,逐步積累這方面的實踐經驗。

  四、努力方向

  對于目前存在的問題,日后改善的措施還是以人為本,尊重同事,在虛心向經驗豐富異常以往從事過這方面工作的老教師請教的同時,也要加強與年輕教師的溝通,多聽取他們的意見提議,努力提高自我的業務水平和管理本事,不斷學習新的管理理念,提高自我的管理藝術和組織本事。

高一數學的教學計劃15

  一、學情分析

  我校選用的數學教材是由人民教育出版社、課程教材研究所、中學數學課程教材研究開發中心編著的A版教材。與舊教材作一比較,發現本套教材是在繼承我國高中數學教科書編寫優良傳統和基礎上進取創新,充分體現了數學的美學價值和人文精神。我校是一所普通的高中,在重點高中和私立學校擴招的影響下,我校新生的素質可想而知了。學生基礎差,學習興趣不大,怎樣調動學生的學習興趣是本期在教學中要解決的重要問題。

  二、教材分析

  本教材有下列幾個特點:

  1、更加注重強調數學知識的實際背景和應用,使教材具有很強的“親和力”,即以生動活潑的呈現方式,激發學生的興趣和美感,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,使學生興趣盎然地投入學習。

  2、以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神,體現了問題性,本套教材的一個很大特點是每一章都能夠看到“觀察”“思考”“探索”以及用“問號性”圖標呈現的“邊空”等欄目,利用這些欄目,在知識形過過程的“關鍵點”上,在運用數學思想方法產生解決問題策略的“關節點”上,在數學知識之間聯系的“聯結點”上,在數學問題變式的“發散點”上,在學生思維的“最近發展區”內,提出恰當的、對學生數學思維有適度啟發的問題,以引導學生的數學探究活動,切實轉變學生的學習方式。

  3、信息技術是一種強有力的認識工具,在教材的編寫過程體現了進取探索數學課程與信息技術的整合,幫忙學生利用信息技術的力量,對數學的本質作進一步的理解。

  4、關注學生數學發展的不一樣需求,為不一樣學生供給不一樣的發展空間,促進學生個性和潛能的發展供給了很好的平臺。例如教材經過設置“觀察與猜想”、“閱讀與思考”、“探究與發現”等欄目,一方面為學生供給了一些關于探究性、拓展性、思想性、時代性和應用性的選學材料,拓展學生的數學活動空間和擴大學生的數學知識面,另一方面也體現了數學的科學價值,反映了數學在推動其他科學和整個文化提高中的作用。

  5、新教材注重數學史滲透,異常是注重介紹我國對數學的貢獻,充分體現數學的人文價值,科學價值和文化價值,激發了學生的愛國主義情感和民族自豪感。

  三、教學任務與目的

  1、了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。進一步體會函數是描述變量之間的依靠關系的重要數學模型,會用集合與對應的語言描述函數,體會對應關系在刻畫函數概念中的作用。了解函數的構成要素,會求簡單函數定義域和值域,會根據實際情境的不一樣需要選擇恰當的方法表示函數。

  經過已學過的具體函數,理解函數的單調性、最大(小)值及其幾何意義,了解奇偶性的'含義,會用函數圖象理解和研究函數的性質。根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函數概念的發展歷程。

  2、了解指數函數模型的實際背景。理解有理指數冪的含義,經過具體實例了解實數指數冪的意義,掌握冪的運算。理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型。

  理解對數的概念及其運算性質,明白用換底公式能將一般對數轉化成自然對數或常用對數;經過閱讀材料,了解對數的發現歷史以及對簡化運算的作用。經過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點。明白指數函數y=ax與對數函數y=logax互為反函數(a》0,a≠1)。經過實例,了解冪函數的概念;結合函數y=x,y=x2,y=x3,y=1x,y=x12的圖象,了解它們的變化情景。

  3、結合二次函數的圖象,確定一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系、根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法、利用計算工具,比較指數函數、對數函數以及冪函數間的增長差異;結合實例體會直線上升、指數爆炸、對數增長等不一樣函數類型增長的含義、收集一些社會生活中普遍使用的函數模型,了解函數模型的廣泛應用。

  4、利用實物模型、計算機軟件觀察很多空間圖形,認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現實生活中簡單物體的結構。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)制作模型,會用斜二側法畫出它們的直觀圖。

  經過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不一樣表示形式。完成實習作業,如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎上,尺寸、線條等不作嚴格要求)。了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。

  5以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關系。經過對很多圖形的觀察、實驗、操作和說理,使學生進一步了解平行、垂直判定方法以及基本性質。學會準確地使用數學語言表述幾何對象的位置關系,體驗公理化思想,培養邏輯思維本事,并用來解決一些簡單的推理論證及應用問題、

  6、在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據斜率判定兩條直線平行或垂直。

  根據確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。能用解方程組的方法求兩直線的交點坐標。探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

  四、教學措施和活動

  1、加強團體備課與個人學習,個人要加強自我學習和養成解數學題的習慣,提高個人專業素養和教學基本功。

  2、注重培養學生自主學習的本事,轉變學生學習數學的方式。學生是學習和發展的主人,教學中要體現學生的主體地位,增強學生的自我學習,自我教育與發展的意識和本事。改善學生的學習方式是高中數學新課程追求的基本理念。

  3、了解新課程教學基本程序,掌握新課程教學常規策略,立足于提高課堂教學效率。

  4、與學生多溝通、多交流,真正成為學生的良師益友。

  5、要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。

【高一數學的教學計劃】相關文章:

高一的數學教學計劃06-14

數學高一教學計劃01-14

數學高一教學計劃03-10

高一數學教學計劃05-08

高一數學的教學計劃01-19

高一數學的教學計劃06-13

高一數學-教學計劃06-11

高一學生數學教學計劃03-30

高一優秀數學教學計劃06-12

高一數學教學計劃08-21