亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高二數學教學計劃

時間:2021-11-12 20:01:13 教學計劃 我要投稿

高二數學教學計劃范文集合十篇

  光陰的迅速,一眨眼就過去了,我們的工作又將迎來新的進步,此時此刻需要制定一個詳細的計劃了。相信大家又在為寫計劃犯愁了?下面是小編為大家收集的高二數學教學計劃10篇,歡迎閱讀與收藏。

高二數學教學計劃范文集合十篇

高二數學教學計劃 篇1

  一、指導思想

  主動而不是被動的進行高中新課程標準改革,認真解讀新課程標準的理念;研究高中新課程標準的實驗與高考銜接的問題;把學生的接受性、被動學習轉變成主動性、研究性學習;使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。

  1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  3.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考

  和作出判斷。

  4.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  5.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二.工作目標

  備課組長在教研組長的領導下,負責年級備課和教學研究工作,努力提高本年級學科的教學質量。

  1.全組成員精誠團結,互相關心,互相支持,弘揚一種同志加兄弟的同仁關系,力爭使我們高一數學組成為一個充滿活力的優秀集體。

  2.不拘形式不拘時間地點的加強交流,互相之間取長補短,與時俱進,教學相長。

  3.在日常工作當中,既保持和優化個人特色,又實現資源共享,同類班級的相關工作做到基本統一。

  4.抓好本年級活動課和研究性學習課的教學,有針對性培養學有余力,學有特長的學生,并做好后進生的轉化工作,真正做到大面積提高教育質量。

  三.主要措施

  1.以老師的精心備課與充滿激情的教學,換取學生學習高效率。

  2.將學校和教研組安排的有關工作落到實處。

  3.落實培輔工作,為高三鋪路!教育要從娃娃抓起,那么對難于上青天的教學我們應當從今天抓起。

  四.活動設想

  1.按時完成學校(教導處,教研組)相關工作。

  2.共同研究,共同探討,備課組為新教材每章節配套單元測試卷兩套。

  3.每周集體備課一次,每次有中心發言人,組織進行教學研討以便分章節搞好集體備課。

  4.互相聽課,以人之長,補己之短,完善自我。

  5.認真組織好培優輔差工作。

  6.做好學科段考、模塊的復習、出題、考試、評卷、成績統計和質量分析評價工作.

  7.積極組織全組成員探索教材特點、積極思考教法分析、認真分析學情以便根據不同的情況實施有效的教學策略.

  五.教學內容與要求

  1.導數及其應用(約24課時)

  (1)導數概念及其幾何意義

  ①通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵(參見選修1-1案例中的例2、例3)。

  ②通過函數圖像直觀地理解導數的幾何意義。

  (2)導數的運算

  ①能根據導數定義求函數y=c,y=x,y=x2,y=x3,y=1/x,y=x的導數。

  ②能利用給出的基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數,能求簡單的復合函數(僅限于形如f(ax b))的導數。

  ③會使用導數公式表。

  (3)導數在研究函數中的應用

  ①結合實例,借助幾何直觀探索并了解函數的單調性與導數的關系(參見選修

  案例中的例4);能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。

  ②結合函數的圖像,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。

  (4)生活中的優化問題舉例。

  例如,使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。(參見選修1-1案例中的例5)

  (5)定積分與微積分基本定理

  ①通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念。

  ②通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。(參見例1)

  (6)數學文化

  收集有關微積分創立的時代背景和有關人物的資料,并進行交流;體會微積分的建立在人類文化發展中的意義和價值。具體要求見本《標準》中"數學文化"的要求。(參見第91頁)

  2.推理與證明(約8課時)

  (1)合情推理與演繹推理

  ①結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數學發現中

  的作用(參見選修2-2中的例2、例3)。

  ②結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。

  ③通過具體實例,了解合情推理和演繹推理之間的聯系和差異。

  (2)直接證明與間接證明

  ①結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。

  ②結合已經學過的數學實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點。

  (3)數學歸納法

  了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。

  (4)數學文化

  ①通過對實例的介紹(如歐幾里德《幾何原本》、馬克思《資本論》、杰弗遜《獨立宣言》、牛頓三定律),體會公理化思想。

  ②介紹計算機在自動推理領域和數學證明中的作用。

高二數學教學計劃 篇2

  在學校領導的正確指導下,我高二數學備課組教師,在深刻體會學校教研處的《認真落實各項教學常規工作》精神的基礎上,在很好地完成了上學年的教學任務的基礎上,擬在本學期,以更飽滿的工作熱情,更端正的教學態度,更行之有效的教學手段,共同提高數學科的教學質量。

  一、有計劃的安排一學期的教學工作計劃:

  新學期開課的第一天,備課組進行了第一次活動。該次活動的主題是制定本學期的教學工作計劃及討論如何響應學校的號召,開展主體式教學模式的教學改革活動。

  一個完整完善的工作計劃,能保證教學工作的順利開展和完滿完成,所以一定要加以十二分的重視,并要努力做到保質保量完成。

  在以后的教學過程中,堅持每周一次的關于教學工作情況總結的備課組活動,發現情況,及時討論及時解決。

  二、定時進行備課組活動,解決有關問題

  備課組將進行每周一次的活動,內容包括有關教學進度的安排、疑難問題的分析討論研究,數學教學的最新動態、數學教學的改革與創新等。一般每次備課組活動都有專人主要負責發言,時間為二節課。經過精心的準備,每次的備課組活動都將能解決一到幾個相關的問題,各備課組成員的教學研究水平也會在不知不覺中得到提高。

  三、積極抓好日常的教學工作程序,確保教學工作的有效開展

  按照學校的要求,積極認真地做好課前的備課資料的搜集工作,然后集體備課,制作成教學課件后共享,全備課組共用。一般要求每人輪流制作,一人一節,上課前兩至三天完成。每位教師的電教課比例都要在90%以上。每周至少兩次的學生作業,要求全批全改,發現問題及時解決,及時在班上評講,及時反饋;每章至少一份的課外練習題,要求要有一定的知識覆蓋面,有一定的難度和深度,每章由專人負責出題;每章一次的測驗題,也由專人負責出題,并要達到一定的預期效果。

  四、積極參加教學改革工作,使學校的教研水平向更高處推進

  本學期學校全面推行主體式的教學模式,要使學生參與到教學的過程中來,更好地提高他們學習的興趣和學習的積極性,使他們更自主地學習,學會學習的方法。積極響應學校教學改革的要求,充分利用網上資源,使用分組討論式教學,充分體現以學生為主體的教學模式,不斷提高自身的教學水平。

高二數學教學計劃 篇3

  ※教學目標:

  知識與技能:

  1、掌握空間直角坐標系的建立過程和相關概念

  2、學會在坐標系中找出空間點的位置,會寫一些簡單幾何體中有關點的坐標

  過程與方法:

  1、經歷運用空間直角坐標系來描述空間圖形的過程,初步建立數感和空間感,從空間的點的坐標培養學生的空間想象能力、抽象思維和探索能力。

  2、通過類比、遷移、的方法得出空間直角坐標系的建立的過程和空間點

  的坐標確定的方法。

  情感、態度與價值觀:

  1、讓學生認識到數學與日常生活的密切聯系,從而能夠積極的參與數學的學習活動。

  2、通過學生的自主學習和合作學習,培養學生合作精神。

  ※教學重、難點:

  重點:空間直角坐標系的建立,點在空間直角坐標系中的坐標表示

  難點:通過建立適當的空間直角坐標系來確定空間點的坐標,以及相關的應用。

  ※教學準備:

  教師準備:制作本節圖4.3-1、圖4.3-2、圖4.3-3、圖4.3-4、圖4.3-5和食鹽

  晶體模型的投影片

  學生準備:直尺和正方形紙片

  ※教學過程:

  (一)問題情境、導入課題

  【投影】問題1、數軸Ox上的點M,用代數的方法怎樣表示呢?

  問題2、直角坐標平面上的點M,怎樣表示呢?

  問題3、怎樣確切的表示室內燈泡的位置?

  (學生復習回顧后回答問題1和問題2,思考、討論后回答)

  【點撥】1、問題1和問題2是確定點在直線和直角坐標平面的位置的方法。

  2、問題3是空間點的位置確定的問題,我們可以類比平面直角坐標的方法,建立空間直角坐標系來確定空間點的位置(板書課題)

  (二)師生互動、探究新知

  1、空間直角坐標系的建立

  【投影】問題4、空間中的點M用代數的方法又怎樣表示呢?

  (教師設問)空間直角坐標系該如何建立呢?

  【投影】(1)直角坐標系的建立過程

  如圖:OABC-DABC是單位正方體,以O為原點,分別以射線OA,OC,OD的方向為正方向,以OA,OC,OD的長為單位長,建立三條數軸: x軸、y 軸、z 軸.這時我們說建立了一個空間直角坐標系O-xyz,其中點O 叫做坐標原點, x軸(橫軸)、y 軸(縱軸)、z 軸(豎軸)叫做坐標軸.通過每兩個坐標軸的平面叫做坐標平面,分別稱為xOy 平面、yOz平面、zOx平面.(引導學生仔細觀察和理解)

  【說明】①三條數軸兩兩相互垂直且相交于原點O,同時都有相同的單位長度

  ②任意兩條確定一個平面,共有三個平面,稱坐標平面

  ③三個坐標平面把空間分成8個部分(讓同學動手操作親歷感受)

  【投影】(2)空間直角坐標系的畫法

  (3)右手直角坐標系

  2、空間點的坐標表示

  【投影】合作探究:

  有了空間直角坐標系,那空間中的任意一點A怎樣來表示它的坐標呢?

  (設問)平面直角坐標系中的點與坐標有著一一對應關系,那么在空

  間直角坐標系中點與三維有序實數組之間也有一一對應關系

  嗎?(學生自行閱讀教材P134)

  【點撥】是一一對應關系。

  3、坐標平面及坐標軸上的點的特征

  【投影】練習:如圖,OABC—A’B’C’D’是單位正方體.以O為原點,分別以射線OA,OC, OD’的方向為正方向,以線段OA,OC, OD’的長為單位長,建立空間直角坐標系O—xyz.試說出正方體的各個頂點的坐標.并指出哪些點在坐標軸上,哪些點在坐標平面上y

  (師生共同完成后,投影幻燈片)

  【投影】想一想?

  在空間直角坐標系中,x、y、z坐標軸上的點、xoy、xoz、yoz坐標平面

  內的點的坐標各有什么特點?

  (學生思考、討論后教師總結)

  (三)典型例題、解釋應用

  【投影】例1:如圖在長方體OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,寫出點D1,C,A1,B1的

  坐標及BB1的中點M的坐標和A1AOO1的對角線的交點N的坐標.. 目標:學生在教師的指導下完成,加深對點的坐標的理解.

  (解的分析和過程見投影)

  【投影】例2:結晶體的基本單位稱為晶胞,下圖是食鹽晶胞的示意圖(可看成八1個棱長是的小正方體堆積成的正方體),其中色點代表鈉原子,黑點代表綠2

  原子.如圖建立空間直角坐標系,試寫出全部鈉原子所在的位置的坐標.

  目標:教師引導學生先閱讀教材,根據建立的空間直角坐標系,寫出所求

  點的坐標.

  (解的分析和過程見投影)

  ( 四)隨堂練習、鞏固新知

  練習1、教材P136練習第2小題

  (五)課堂小結、溫故知新

  1、空間直角坐標系的建立

  2、空間直角坐標系的畫法

  3、空間直角坐標系中點的坐標表示方法及點與坐標的一一對應關系

  (六)布置作業

  教材P136練習第1、3小題。

  (七)板書設計:

  4.3.1空間直角坐標系

  一、空間直角坐標系的建立

  1、建立過程

  2、空間直角坐標系畫法

  3、空間直角坐標系是右手系

  二、空間坐標系中點的坐標表示方法

  三、坐標系中特殊點的坐標特征

  1、坐標軸上點的坐標特征

  2、坐標平面上點的坐標特點

  四、例題分析

高二數學教學計劃 篇4

  教材分析:

  本學期我任教05財會(3)班數學,所選的教材是人民教育出版社職業教育中心編著的《數學(基礎版)》。該教材是在原有職業高中數學教材的基礎上,依據國家教育部新制定的《中等職業學校數學教學大綱(試行)》重新編寫的,具有以下特點:

  1.注重基礎:

  “大綱”對傳統的初等數學教育內容進行了精選,把理論上、方法上以及代生產與生活中得到廣泛應用的知識作為各專業必學的基本內容。根據“大綱”要求,把函數與幾何,以及研究函數與幾何的方法作為教材的核心內容。

  2.降低知識起點

  多數中職學生對學過的數學知識需要復習與提高,才能順利進入中職階段的數學學習。這套數學教材編寫從學生的實際出發,提高中職學生的數學素質,使多數學生能完成“大綱”中規定的教學要求,以保證中職學生能達到高中階段的基本數學水準。

  3.增加較大的使用彈性

  考慮中等職業學校專業的多樣性,各對數學能力的要求也不相同,教學要求給出了較大的選擇范圍,增加了教學的彈性。教材中給出了三個層次:一是必學的內容分兩種教學要求(在教參中指出);二是教材中配備一些難度較大的習題,供學有余力的學生去做,培養這些學生的解題能力;三是編寫了選學內容,選學內容主要是深化基本內容所學知識和應用基本內容解決實際問題的能力。

  4.注重數學應用意識的培養

  每章專設應用一節,列舉數學在生活實際、現代科學和生產中應用的例子,培養學生用數學解決實際問題的意識和能力。

  5.注重培養學生使用計算機工具的能力

  在“大綱”中,要求培養學生使用基本計算工具的恩能夠里。這就要求學生掌握使用計數器的技能,所以在新教材中增加了用計數器做的練習題。有條件的學生還可以培養學生使用計算機技術。

  教材內容:

  本學期使用的是第二冊的教材,內容包括:平面解析幾何,立體幾何,排列、組合與二項式定理,概率與統計初步。

  每章編寫結構:引言,正文(大節、小節、聯系、習題),復習問題和復習參考題,閱讀材料(數學文化)等。除個別標注星號的選學內容外,都是必學內容。

  學生情況分析及教學對策:

  05財會(3)班是我剛接手的班級,因而對學生的情況并不是非常熟悉。從總體上看,該班的'學習中堅力量主要在一小部分的女生,其他學生學習積極性較差。在要學習的學生當中,普遍表現出底子薄、基礎差的特點,對以往知識的缺漏非常多。因而在教學過程當中,及時補遺、查漏補缺尤為重要。知識引入環節我設置舊知識補遺,先回顧新課所涉及到的舊知識點;對學生的要求以能處理簡單的操作題為主。另外,舒適的環境對學生的情緒也有挺大的影響,因而在教學過程中應滲入環境教育,培養學生的環境保護意識。

  教學進度表

  周次

  起訖月日

  教學內容

  教時

  執行情況

  1

  8月28日至9月3日

  學期準備工作

  2

  9月4日至9月10日

  8.1(1);8.2(2);8.3(2)

  5

  3

  9月11日至9月17日

  8.4(2);8.5(2);8.6(1)

  5

  4

  9月18日至9月24日

  8.7(1);8.8(1);習題(1);8.9(2)

  5

  5

  9月25日至10月1日

  8.10(1);8.11(1);8.12(1);習題(2)

  5

  6

  10月2日至10月8日

  國慶放假

  7

  10月9日至10月15日

  8.13(3);8.14.1(2)

  5

  8

  10月16日至10月22日

  8.14.2(1);8.15(3);習題(1)

  5

  9

  10月23日至10月29日

  習題(1);第一章復習(2);9.1(2)

  5

  10

  10月30日至11月5日

  9.2(1);9.3(2);9.4(1);9.5(1)

  5

  11

  11月6日至11月12日

  期中考復習

  5

  12

  11月13日至11月19日

  期中考試

  13

  11月20日至11月26日

  9.6(1);復習(2);9.7(1);9.8(1)

  5

  14

  11月27日至12月3日

  9.9(1);9.10(2);9.11(2)

  5

  15

  12月4日至12月10日

  習題(2);9.12(1);9.13(2)

  5

  16

  12月11日至12月17日

  9.14(1);9.15(1);9.16(2);9.17(1)

  5

  17

  12月18日至12月24日

  9.17(1);習題(2);9.18(1)

  5

  18

  12月25日至12月31日

  9.19(2);9.20(1);9.21(2)

  5

  19

  1月1日至1月7日

  9.22(1);9.23(3);9.24(1)

  5

  20

  1月8日至1月14日

  9.25(3);習題(2)

  5

  21

  1月15日至1月21日

  期末復習

  5

  22

  1月22日至1月28日

  期末考試

  23

  1月29日至2月4日

  期末結束工作

  24

  2月5日至2月11日

  期末結束工作

高二數學教學計劃 篇5

  一、教材分析

  1.教材所處的地位和作用

  在學習了隨機事件、頻率、概率的意義和性質及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現信息技術的優越性而新增的內容。

  2.教學的重點和難點

  重點:正確理解隨機數的概念,并能應用計算器或計算機產生隨機數。

  難點:建立概率模型,應用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現實問題。

  二、教學目標分析

  1、知識與技能 :

  (1)了解隨機數的概念;

  (2)利用計算機產生隨機數,并能直接統計出頻數與頻率。

  2、過程與方法:

  (1)通過對現實生活中具體的概率問題的探究,感知應用數學解決問題的方法,體會數學知識與現實世界的聯系,培養邏輯推理能力;

  (2)通過模擬試驗,感知應用數字解決問題的方法,自覺養成動手、動腦的良好習慣

  3、情感態度與價值觀:

  通過數學與探究活動,體會理論來源于實踐并應用于實踐的辯證唯物主義觀點.

  三、教學方法與手段分析

  1、教學方法:本節課我主要采用啟發探究式的教學模式。

  2、教學手段:利用多媒體技術優化課堂教學

  四、教學過程分析

  布置練習:

  課本練習 3、4

  「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

  五、板書設計

  3.2.2(整數值)隨機數的產生

  問題解答: 課堂檢測:

高二數學教學計劃 篇6

  一,學生的基本情況

  118班66人,115班48人。118班學習數學的氛圍很濃。但由于高一的函數部分基礎較差,對高二乃至整個高中的數學學習影響很大。數學成績或多或少都有尖子生,但如果能認真復習函數部分,學生努力,前途無量。如果我們能很好地引導他們,進一步培養他們的學習興趣,…

  二,教學要求

  (a)情感目標

  (1)通過問題分析方法、一個不等式問題的多解、一個不等式問題的多解、一個不等式問題的多重證明的教學,培養學生的學習興趣。

  (2)提供生活背景,讓學生體驗不等式、直線、圓以及圍繞它們的圓錐曲線,培養運用數學學習數學的意識。

  (3)探究不等式和二次曲線的本質,體驗獲得數學規律的艱辛和樂趣,學會小組合作學習中的交流和相互評價,提高學生的合作意識

  (4)以情感目標為基礎,規范教學過程,增強學習信念和信心。

  (5)給學生時間和空間、班級和探索發現的權利,給學生自主探索和合作的機會,在發展思維能力的同時,培養學生的數學情感、學好數學的自信心和追求數學的科學精神。

  (6)讓學生體驗“發現——個挫折3354個矛盾——個頓悟——個新發現”的科學發現過程的神奇

  (2)能力要求

  1.培養學生的記憶能力。

  (1)在研究不等式的性質、平均不等式、思維方法和邏輯模式時,進一步培養記憶能力。讓記憶準確持久,快速正確的重現。

  (2)通過對定義和命題的整體結構的教學,可以揭示它們的本質特征和相互關系,培養對數學本質問題的背景事實和具體數據的記憶。

  (3)通過揭示解析幾何的概念、公式和視值之間的對應關系,培養記憶能力。

  2.培養學生的計算能力。

  (1)通過解不等式和不等式組的訓練,訓練學生的運算能力。

  (2)加強概念、公式、規則的清晰性和靈活性的教學,培養學生的計算能力。(3)通過分析方法的教學,提高學生在操作過程中清晰、合理、簡單的能力。

  (4)通過一題多解、一題多變,培養正確、快速、合理、靈活的計算能力,促進知識的滲透和傳遞。(5)利用數字和形狀的結合,尋找另一種提高學生計算能力的方法。

  3.培養學生的思維能力。

  (1)通過用參數求解不等式,培養學生的思維縝密和邏輯思維。

  (2)通過多解、多解、多證分析幾何和不等式,培養思維的靈活性和敏捷性,發展發散思維能力。

  (3)通過推廣和普及不等式培養學生的創造性思維。

  (4)加強知識的橫向聯系,培養學生數形結合的能力。(5)通過解析幾何的概念教學,培養學生的正向思維和逆向思維能力。

  (6)通過典型例題的不同思路分析,培養思維的靈活性是學生掌握思維轉化的途徑。

  4.培養學生的觀察能力。

  (1)在比較和鑒別中,提高觀察的準確性和完整性。(2)通過對人格特征的分析研究,提高觀察深度。(3)知識要求

  1、掌握不等式的概念、性質和證明不等式的方法,不等式的解法;

  2.通過直線和圓的教學,學生可以了解解析幾何的基本思想,掌握

  (2)難點1。不等式的解包括絕對值和不等式的證明。2.角度公式、點到直線距離公式的推導及簡單線性規劃的求解。

  3.用坐標法研究幾何問題,尋找曲線方程的一般方法。

  五.教學措施

  1.在教學中,要將傳授知識與培養能力相結合,充分調動學生的學習主動性,培養學生的概括能力,使學生掌握數學的基本方法和技能。

  2.堅持與高三接觸,踏實面對高考,以數學五大思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生學習負擔。

  3.加強教育教學研究,堅持學生主體性原則,循序漸進,啟發性。研究并采用基于“發現教學模式”的教學方法,全面提高教學質量。

  4.積極參與和組織集體備課,共同學習,努力提高教學質量

  5.堅持聽同齡人講課,取長補短。互相學習,共同進步。

  6.堅持學習方法,加強個別輔導(差生和優等生),提高全體學生的整體數學水平,培養尖子生。

  7.加強數學研究性課程的教學和研究指導,培養知識的實踐能力。

  第六,課表

  這學期有81個課時。1.不等式18課時

  2.直線圓方程25課時

  3.圓錐曲線20課時

  4.研究班18小時

高二數學教學計劃 篇7

  教學目標:

  1、知識與技能

  (1)了解算法的含義,體會算法的思想;

  (2)能夠用自然語言敘述算法;

  (3)掌握正確的算法應滿足的要求;

  (4)會寫出解線性方程(組)的算法;

  (5)會寫出一個求有限整數序列中的最大值的算法.

  2、過程與方法

  (1)通過求解二元一次方程組,體會解方程的一般性步驟,從而得到一個解二元一次方程組的步驟,這些步驟就是算法,不同的問題有不同的算法;

  (2)同一個問題也可能有多個算法,能模仿求解二元一次方程組的步驟,寫出一個求有限整數序列中的最大值的算法.

  3、情感與價值觀

  通過本節的學習,對計算機的算法語言有一個基本的了解;明確算法的要求,認識到計算機是人類征服自然的一個有力工具,進一步提高探索、認識世界的能力.

  教學重點、難點:

  重點:算法的含義,解二元一次方程組、判斷一個數為質數和利用“二分法”求方程近似解的算法設計.

  難點:把自然語言轉化為算法語言.

  教學過程:

  (一)創設情景、導入課題

  問題1:把大象放入冰箱分幾步?

  第一步:把冰箱門打開;

  第二步:把大象放進冰箱;

  第三步:把冰箱門關上.

  問題2:指出在家中燒開水的過程分幾步?(略)

  問題3:如何求一元二次方程 的解?

  第一步:計算 ;

  第二步:如果 ,

  如果 ,方程無解

  第三步:下結論.輸出方程的根或無解的信息.

  注意:在以上三個問題的求解過程中,老師要緊扣算法定義,帶領學生總結,反復強調,使學生體會以下幾點:

  ①有窮性:步驟是有限的,它應在有限步操作之后停止,而不能是無限地執行下去。

  ②確定性:每一步應該是確定的并且能有效地執行且得到確定的結果,而不應當是模棱兩可的。

  ③邏輯性:從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,只有執行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。

  ④不唯一性:求解某一個問題的算法不一定只有唯一的一個,可以有不同的算法。

  ⑤普遍性:很多具體的問題,都可以設計合理的算法去解決。

  注:其他還有輸入性、輸出性等特征,結論不固定.

  提問:算法是如何定義?

  (二)師生互動、講解新課

  x-2y=-1 ①

  回顧(課本P2內容): 寫出解二元一次方程組 2x y=1 ② 的算法.

  解:第一步,②×2 ①,得5x=1;③

  第二步,解③,得x= ;

  第三步,②-①×2得5y=3;④

  第四步,解④ ,得y= ;

  第五步,得到方程組的解為 x= ;y= 。

  思考1:你能寫出求解一般的二元一次方程組的步驟嗎?

  上題的算法是由加減消元法求解的,這個算法也適合一般的二元一次方程組的解法

  對于一般的二元一次方程組 可以寫出類似的求解步驟:

  第一步,①×b2-②×b1,得 ;③

  第二步,解③,得 .

  第三步,②×a1-①×a2,得 ;④

  第四步,解④,得 ;

  第五步,得到方程組的解為

  (高斯消去法)

  思考2:根據上述分析,用加減消元法解二元一次方程組,可以分為五個步驟進行,這五個步驟就構成了解二元一次方程組的一個“算法”.我們再根據這一算法編制計算機程序,就可以讓計算機來解二元一次方程組.那么解二元一次方程組的算法包括哪些內容?

  思考3:一般地,算法是由按照一定規則解決某一類問題的基本步驟組成的.

  你認為:

  (1)這些步驟的個數是有限的還是無限的?

  (2)每個步驟是否有明確的計算任務?

  總結:在數學中,按照一定規則解決某一類問題的明確和有限的步驟稱為算法.

  算法(algorithm)一詞出現于12世紀,源于算術(algorism),即算術方法.指的是用阿拉伯數字進行算術運算的過程.在數學中,算法通常是指按照一定的規則解決某一類問題的明確的和有限的步驟.現在,算法通常可以編成計算機程序,讓計算機執行并解決問題.后來,人們把它推廣到一般,把進行某一工作的方法和步驟稱為算法.

  廣義地說,算法就是做某一件事的步驟或程序.菜譜是做菜肴的算法,洗衣機的使用說明書是操作洗衣機的算

  法,歌譜是一首歌曲的算法.在數學中,主要研究計算機能實現的算法,即按照某種機械程序步驟一定可以得到結果的解決問題的程序.比如解方程的算法、函數求值的算法、作圖的算法,等等.

  (三)例題剖析,鞏固提高

  例1(課本P3例1):如果讓計算機判斷7是否為質數,如何設計算法步驟?

  算法:

  第一步,用2除7,得到余數1,所以2不能整除7.

  第二步,用3除7,得到余數1,所以3不能整除7.

  第三步,用4除7,得到余數3,所以4不能整除7.

  第四步,用5除7,得到余數2,所以5不能整除7.

  第五步,用6除7,得到余數1,所以6不能整除7.

  因此,7是質數.

  課堂練習1:

  整數89是否為質數?如果讓計算機判斷89是否為質數,按照上述算法需要設計多少個步驟?

  思考4:用2~88逐一去除89求余數,需要87個步驟,這些步驟基本是重復操作,我們可以按下面的思路改進這個算法,減少算法的步驟.

  (1)用i表示2~88中的任意一個整數,并從2開始取數;

  (2)用i除89,得到余數r. 若r=0,則89不是質數;若r≠0,將i用i 1替代,再執行同樣的操作;

  (3)這個操作一直進行到i取88為止.

  你能按照這個思路,設計一個“判斷89是否為質數”的算法步驟嗎?

  算法設計:

  第一步,令i=2;

  第二步,用i除89,得到余數r;

  第三步,若r=0,則89不是質數,結束算法;若r≠0,將i用i 1替代;

  第四步,判斷“i>88”是否成立?若是,則89是質

  數,結束算法;否則,返回第二步.

  探究:一般地,判斷一個大于2的整數是否為質數的算法步驟如何設計?

  在中央電視臺幸運52節目中,有一個猜商品價格的環節,竟猜者如在規定的時間內大體猜出某種商品的價格,就可獲得該件商品.現有一商品,價格在0~8000元之間,采取怎樣的策略才能在較短的時間內說出比較接近的答案呢?

  例2、一群小兔一群雞,兩群合到一群里,要數腿共48,要數腦袋整17,多少只小兔多少只雞?

  算法1:S1 首先計算沒有小兔時,小雞的數為:17只,腿的總數為34條。

  S2 再確定每多一只小兔、減少一只小雞增加的腿數2條。

  S3 再根據缺的腿的條數確定小兔的數量: (48-34)/2=7只

  S4 最后確定小雞的數量:17-7=10只.

  算法2:S1 首先設 只小雞, 只小兔。

  S2 再列方程組為:

  S3 解方程組得:

  S4 指出小雞10只,小兔7只。

  算法3:S1 首先設 只小雞,則有 只小兔

  S2 列方程

  S3 解方程得 ,則

  S4 指出小雞10只,小兔7只.

  算法4:S1 “請一名馴獸師”所有小雞抬一條腿,所有小兔抬兩條腿

  S2 有小兔 只

  S3 有小雞 只

  S4 指出小雞10只,小兔7只.

  算法5:S1 有小兔 只

  S2 有小雞 只

  二分法:

  對于區間[a,b ]上連續不斷,且f(a)f(b)<0的函數y=f(x),通過不斷地把函數f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,而得到零點近似值的方法叫做二分法.

  例3(課本P4例2):寫

  出用“二分法”求方程 的近似解的算法.

  算法分析:

  令f(x)= ,則方程 的解就是函數f(x)的零點.

  第一步,令f(x)= ,給定精確度d.

  第二步,確定區間[a,b],滿足f(a)·f(b)<0.

  第三步,取區間中點 .

  第四步,若f(a)·f(m)<0,則含零點的區間為[a,m],否則,含零點的區間為[m,b].

  將新得到的含零點的區間仍記為[a,b];

  第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.

  (四)課堂小結,鞏固反思

  1、算法的主要特點:

  (1)有限性:一個算法在執行有限步后必須結束;

  (2)確切性:算法的每一個步驟和次序必須是確定的;

  (3)輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件.所謂0個輸入是指算法本身定出了初始條件.

  (4)輸出:一個算法有1個或多個輸出,以反映對輸入數據加工后的結果.沒有輸出的算法是毫無意義的.

  2、計算機解決任何問題都要依賴算法,算法是建立在解法基礎上的操作過程,算法不一定要有運算結果.設計一個解決某類問題的算法的核心內容是將解決問題的過程分解為若干個明確的步驟,即算法,它沒有一個固定的模式,但有以下幾個基本要求:

  (1)符合運算規則,計算機能操作;

  (2)每個步驟都有一個明確的計算任務;

  (3)對重復操作步驟作返回處理;

  (4)步驟個數盡可能少;

  (5)每個步驟的語言描述要準確、簡明.

高二數學教學計劃 篇8

  一、指導思想:

  為進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下:

  1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、 教材特點:

  我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:

  1.親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。

  2.問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。

  3.科學性與思想性:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。

  4.時代性與應用性:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。

  三、 教法分析:

  1.選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。

  2.通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

  3.在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

  四、 學情分析:

  1、基本情況:高二(1) 班共50 人,男生36 人,女生14 人;本班相對而言,數學尖子約13 人,中上等生約23 人,中等生約6 人,中下生約6人,后進生約 2 人。

  高二(2) 班共49 人,男生37 人,女生12 人;本班相對而言,數學尖子約0人,中上等生約7人,中等生約8人,中下生約22人,后進生約12人。

  2、(1)班學生學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

  五、教學要求:

  1、了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數學發現中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理;了解合情推理和演繹推理之間的聯系和差異。

  2、了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點;了解間接證明的一種基本方法反證法;了解反證法的思考過程、特點。

  3、(理)了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。

  4、理解復數相等的充要條件;了解復數的代數表示法及其幾何意義;會進行復數代數形式的四則運算;了解復數代數形式的加、減運算的幾何意義。

  5、(理)理解分類加法計數原理和分類乘法計數原理;會用分類加法計數原理或分步乘法計數原理分析和解決一些簡單的實際問題;理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,能解決簡單的實際問題;能用計數原理證明二項式定理,會用二項式定理解決與二項展開式有關的簡單問題。

  6、(理)理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現象的重要性;理解超幾何分布及其導出過程,并能進行簡單的應用;了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,并能解決一些簡單的實際問題;理解取有限個值的離散型隨機變量均值、方差的概念,能計算簡單離散型隨機變量的均值、方差,并能解決一些實際問題;利用實際問題的直方圖,了解正態分布曲線的特點及曲線所表示的意義。

  7、了解下列一些常見的統計方法,并能應用這些方法解決一些實際問題:了解獨立性檢驗(只要求22列聯表)的基本思想、方法及其簡單應用;了解假設檢驗的基本思想、方法及其簡單應用;了解聚類分析的基本思想、方法及其簡單應用;了解回歸的基本思想、方法及其簡單應用。

  9、了解程序框圖;了解工序流程圖(即統籌圖);能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用;了解結構圖;會運用結構圖梳理已學過的知識、整理收集到的資料信息。

  8、所有考生都學習選修4-4 坐標系與參數方程,理科考生還需學習選修4-5不等式選講這部分專題內容。

  六、教學措施:

  1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

  2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

  3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

  4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。

  6、重視數學應用意識及應用能力的培養。

  七、教學進度安排(略)

高二數學教學計劃 篇9

  一、指導思想:

  在學校教學工作意見指導下,在級部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。具體目標如下。

  1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二.學生基本情況

  高二理可學生共有926人,多數學生學習積極性強,部分學生學習數學的氣氛不濃、基礎較差。學生對學過的知識內容復習不及時,致使對高二的數學學習有很大的影響,高一數學成績充分反映尖子生少,成績特差的學生也有不少,有一批思維相當靈活的學生,但學習不夠刻苦,學習成績一般,但有較大的潛力,以后好好的引導,進一步培養他們的學習興趣,從而帶動全體同學的學習熱情,提高學生的數學成績。

  三、教法分析:

  1.選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以達到培養其興趣的目的。

  2.通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

  3.在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

  四、教學措施:

  1、認真落實,搞好集體備課。每周至少進行一次集體備課。各組老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。

  2、詳細計劃,保證練習質量。教學中用配備資料《學案導學》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容“滾動式”編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。

  3、抓好第二課堂,穩定數學優生,培養數學能力興趣。競賽班的教學進度要加快,教學難度要有所降低,各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。

  4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。

  五、具體措施

  1.不孤立記憶和認識各個知識點,而要將其放到相應的體系結構中,在比較、辨析的過程中尋求其內在聯系,達到理解層次,注意知識塊的復習,構建知識網路.注重基礎知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數學語言的表達形式,推力論證要思路清晰、整體完整.

  2.學會分析,首先是閱讀理解,側重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側重于經驗及教訓的總結,重視常見題型及通法通解.

  3.以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規范解題,養成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數學思想和數學方法的應用.

  4.協調好講、練、評、輔之間的關系,追求數學復習的最佳效果,注重實效,努力提高復習教學的效率和效益;精心設計教學,做到精講精練,不加重學生的負擔,避免“題海戰” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調整復習策略,使復習更加有重點、針對性,加快教學節奏,提高教學效率.

  5.周密計劃合理安排,現數學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力.

  6.多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數學聯系生活、生產、環境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數學綜合能力之目的.不脫離基礎知識來講學生的能力,基礎扎實的學生不一定能力強.教學中,不斷地將基礎知識運用于數學問題的解決中,努力提高學生的學科綜合能力.

高二數學教學計劃 篇10

  一、學生基本情況

  261班共有學生75人,268班共有學生72人。268班學習數學的氣氛較濃,但由于高一函數部分基礎特別差,對高二乃至整個高中的數學學習有很大的影響,數學成績尖子生多或少,但若能雜實復習好函數部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養他們的學習興趣。

  二、高二下冊數學教學要求

  (一)情意目標

  (1)通過分析問題的方法的教學、通過不等式的一題多解、多題一解、不等式的一題多證,培養學生的學習的興趣。

  (2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養學數學用數學的意識。

  (3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識 (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

  (6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程的幻妙多姿

  (二)能力要求

  1、培養學生記憶能力。

  (1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養記憶能力。做到記憶準確、持久,用時再現得迅速、正確。

  (2)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。 (3)通過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養記憶能力。

  2、培養學生的運算能力。

  (1)通過解不等式及不等式組的訓練,培養學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。

  (3)通過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數形結合,另辟蹊徑,提高學生運算能力。

  3、培養學生的思維能力。

  (1)通過含參不等式的求解,培養學生思維的周密性及思維的邏輯性。

  (2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養思維的靈活性和敏捷性,發展發散思維能力。

  (3)通過不等式引伸、推廣,培養學生的創造性思維。

  (4)加強知識的橫向聯系,培養學生的數形結合的能力。

  (5)通過解析幾何的概念教學,培養學生的正向思維與逆向思維的能力。

  (6)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。

  4、培養學生的觀察能力。

  (1)在比較鑒別中,提高觀察的準確性和完整性。

  (2)通過對個性特征的分析研究,提高觀察的深刻性。

  (三)知識要求

  1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;

  2、通過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規劃問題,掌握曲線方程、圓的概念。

  3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。

  三、高二下冊數學教材簡要分析

  1、不等式的主要內容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據不等式的性及同解變形來完成的。不等式在整個高中數學中是一個重要的工具,是培養運算能力、邏輯思維能力的強有力載體。

  2、直線是最簡單的幾圖形,是學習圓錐曲線、導數和微分等知識的的基礎。,是直線方程的一個直接應用。主要內容有:直線方程的幾種形式,線性規劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數形結合解析幾何相互為用思想的載體。

  3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標準方程研究它們的性質。

  四、高二下冊數學重點與難點

  (一)重點

  1、不等式的證明、解法。

  2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。

  3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。

  (二)難點

  1、含絕對值不等式的解法,不等式的證明。

  2、到角公式,點到直線距離公式的推導,簡單線性規劃的問題的解法。

  3、用坐標法研究幾何問題,求曲線方程的一般方法。

  五、高二下冊數學教學措施

  1、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數學基本方法、基本技能。

  2、堅持與高三聯系,切實面向高考,以五大數學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。

  3、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發性原則。研究并采用以“發現式教學模式”為主的教學方法,全面提高教學質量。

  4、積極參加與組織集體備課,共同研究,努力提高授課質量

  5、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。

  6、堅持學法研討,加強個別輔導(差生與優生),提高全體學生的整體數學水平,培育尖子學生。 7、加強數學研究課的教學研究指導,培養學識的動手能力。

  六、高二下冊數學教學進度表

  日期 周次 節/周 教學內容(課時)

  3月1日~3月7日 1 5 一元二次不等式(組)與簡單的線性規劃(5)

  8日~14日 2 6 基本不等式(3)測試與講評(3)

  15日~21日 3 6 命題及其關系(3),充分條件與必要條件(2),簡單邏輯連接詞(1)

  22日~28日 簡單邏輯連接詞(2),全稱量詞與存在量詞(2),復習(2)

  29日~4月5日 5 6 曲線與方程(2),橢圓(4)

  6日~12日 6 6 橢圓(2),雙曲線(4)

  13日~19日 7 6 ,拋物線(4),復習(2)

  20日~26日 8 6 空間向量及其運算(5),立體幾何中的向量方法(1)

  27日~5月2日 9 6 立體幾何中的向量方法(4),小結與復習(2)

  3日~9日 10 6 期中考試

  10日~16日 11 6 ,段考講評(2),變化率與導數(4)

  17日~23日 12 6 導數的計算(2)導數在研究函數中的應用(4)

  24日~30日 13 6 生活中的優化問題舉例(4),定積分的概念(2)

  6月1日~7日 14 6 定積分的概念(2),微積分基本定理(2)、定積分的簡單應用(2)

  8日~14日 15 6 復習與測試(4),合情推理與演繹推理(2)

  15日~21日 16 6 合情推理與演繹推理(2)、直接證明與間接證明(4)

  22日~28日 17 6 數學歸納法(3),復習(3)

  29日~7月4日 18 6 數系的擴充和復數的概念(3)、復數代數形式的四則運算(3)

  5日~11日 19 6 期末復習(6)

  12日~13日 20 6 期末考試

【高二數學教學計劃范文集合十篇】相關文章:

高二數學下教學計劃12-13

高二的數學教學計劃12-10

關于高二數學教學計劃范文(通用7篇)12-24

有關小學數學教學計劃范文集合十篇12-25

學習高二數學的教學計劃2篇12-09

高二上學期數學教學計劃范文7篇12-28

實用的小學數學教學計劃范文錦集十篇12-16

數學教學總結范文集合十篇10-28

小學的數學教學計劃范文03-21

數學教師教學計劃范文12-16