高三理科數學教學計劃
導語:平等對待學生,關心每一位學生的成長,宗旨是教出來的學生不一定都很優秀,但肯定每一位都有進步;讓更多的學生喜歡數學。接下來小編整理了高三理科數學教學計劃。文章希望大家喜歡!
一、指導思想
今年是我省使用新教材的第八年,即進入了新課程標準下高考的第六年。高三理科數學教學要以《數學課程標準》為依據,全面貫徹教育方針,積極實施素質教育。提高學生的學習能力仍是我們的奮斗目標。近年來的高考數學試題逐步做到科學化、規范化,堅持了穩中求改、穩中創新的原則。高考試題不但堅持了考查全面,比例適當,布局合理的特點,也突出體現了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素養,這些問題應引起我們在教學中的關注和重視。
二、注意事項
1.高度重視基礎知識,基本技能和基本方法的復習。
“基礎知識,基本技能和基本方法”是高考復習的重點。我們希望在復習課中要認真落實“基礎練習”,并注意蘊涵在基礎知識中的能力因素,注意基本問題中的能力培養。特別是要學會把基礎知識放在新情景中去分析,應用。
2.高中的‘重點知識’在復習中要保持較大的比重和必要的'深度。
原來的重點內容函數、不等式、數列、向量、立體幾何,平面三角及解析幾何中的綜合問題等。在教學中,要避免重復及簡單的操練。新增的內容:算法、概率等內容在復習時也應引起我們的足夠重視。總之高三的數學復習課要以培養邏輯思維能力為核心,加強運算能力為主體進行復習。
3.重視‘通性、通法’的落實。
要把復習的重點放在教材中典型例題、習題上;放在體現通性、通法的例題、習題上;放在各部分知識網絡之間的內在聯系上抓好課堂教學質量,定出實施方法和評價方案。
4.認真學習,研究近三年的高考試題,提高復習課的效率。
《考試說明》是命題的依據,復習的依據。高考試題是《考試說明》的具體體現。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。并力求在二輪復習中縮小這一差距,更好地指導我們的復習。
5.滲透數學思想方法,培養數學學科能力。
《考試說明》明確指出要考查數學思想方法,要加強學科能力的考查。我們在復習中要加強數學思想方法的復習,如轉化與化歸的思想、函數與方程的思想、分類討論的思想、數形結合的思想。以及配方法、換元法、待定系數法、反證法、數學歸納法、解析法等數學基本方法都要有意識地根據學生學習實際予以復習及落實。
6.二輪復習課中注意新的目標定位。
①培養學生搜集和處理信息的能力;
②激發學生的創新精神;
③培養學生在學習過程中的的合作精神;
④激活顯示各科知識的儲存,嘗試相關知識的靈活應用及綜合應用。
三、知識和能力要求
1.知識要求
對知識的要求由低到高分為三個層次,依次是知道和感知、理解和掌握、靈活和綜合運用,且高一級的層次要求包括低一級的層次要求。
(1)感知和了解:要求對所學知識的含義有初步的了解和感性的認識或初步的理解,知道這一知識內容是什么,并能在有關的問題中識別、模仿、描述它。
(2)理解和掌握:要求對所學知識內容有較為深刻的理論認識,能夠準確地刻畫或解釋、舉例說明、簡單的變形、推導或證明、抽象歸納,并能利用相關知識解決有關問題。
(3)靈活和綜合運用:要求系統地掌握知識的內在聯系,能靈活運用所學知識分析和解決較為復雜的或綜合性的數學現象與數學問題。
2.能力要求
能力主要指運算求解能力、數據處理能力、空間想象能力、抽象概括能力、推理論證能力以及實踐能力和創新意識。
(1)運算求解能力:會根據法則、公式進行正確運算、變形;能根據問題的條件,尋找與設計合理、簡捷運算途徑。
(2)數據處理能力:會收集、整理、分析數據,能抽取對研究問題有用的信息,并作出正確的判斷;能根據要求對數據進行估計和近似計算。
(3)空間想象能力:會畫簡單的幾何圖形;能準確地分析圖形中有關量的相互關系;會運用圖形與圖表等手段形象地揭示問題的本質。
(4)抽象概括能力:能從具體、生動的實例中,發現研究對象的本質;能從給定的大量信息材料中,概括出一些結論,并能應用于解決問題或作出新的判斷。
(5)推理論證能力:會根據已知的事實和已獲得的正確數學命題來論證某一數學命題真實性。
(6)應用意識和實踐能力:能夠對問題所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題,建立數學模型;能應用相關的數學方法解決問題。
(7)創新意識和能力:能夠獨立思考,靈活和綜合地運用所學數學的知識、思想和方法,提出問題、分析問題和解決問題。
【高三理科數學教學計劃】相關文章:
理科高三數學教案10-17
新高三理科數學備考計劃01-20
高三理科數學數列復習教案10-17
高二理科數學教學計劃03-28
高三理科數學下學期試題05-03
高三理科數學教學總結五篇01-08
高三數學理科教案10-17
高三理科數學算法初步復習教案10-17
高三數學下冊期中試題理科部分05-21