冀教版初二數學實數教學計劃
一、教材的地位和作用
從《數學課程標準》看,關于數的內容,初中學段主要學習有理數和實數,它們是“數與代數”領域的重要內容。對于有理數和實數,初中學段共有安排三個章節的內容,分別是七年級上冊第一章《有理數》,八年級上冊第十三章《實數》和九年級上冊第二十一章《二次根式》。本章可以看成其后的代數內容的起始章,本章是在有理數的基礎上認識實數,對于實數的學習,除本章外,還要在“二次根式”一章中通過研究二次根式的運算,進一步認識實數的運算。
本章的主要內容是平方根、立方根的概念和求法,實數的有關概念和運算。通過本章的學習,學生對數的認識就由有理數范圍擴大到實數范圍,本章之前的數學內容都是在有理數范圍內討論的,學習本章之后,將在實數范圍內研究問題。雖然本章的內容不多,篇幅不大,但在中學數學中占有重要的地位,它不僅是后面學習二次根式、一元二次方程以及解三角形等知識的基礎,也為學習高中數學中不等式、函數以及解析幾何等的大部分知識作好準備。
二、教學內容分析
(一)本章知識結構框圖
1.本章知識的內在結構如下圖所示:
2.本章知識的展開順序如下圖所示:
(二)教科書內容分析
本章主要內容包括算術平方根、平方根、立方根以及實數的有關概念和運算。
教科書的第一節是平方根,本節先研究算術平方根,再研究平方根。教科書首先創設一個問題情景,抽象出這個情景中的數學問題,即已知正方形的面積求邊長的問題,這是一個典型的求算術平方根的問題,這與學生以前熟悉的已知邊長求面積是一個互逆的過程。通過對這類問題的探討,引出算術平方根,給出算術平方根的概念和它的符號表示,這時教科書所涉及到的被開方數都是完全平方數。接著,教科書設置一個“探究”欄目,要求學生將兩個面積為1的小正方形拼成一個面積為2的大正方形,并求出這個大正方形的邊長。這也是一個已知正方形的面積求它的邊長的問題,由于這個大正方形的面積為2,根據前面學過的算術平方根的概念和表示方法,可以求出這個大正方形的邊長是 這樣教科書就引進了用根號形式表示的無理數(但暫時不出現無理數的概念),這是教科書第一次出現這樣的數。另外,通過學生將兩個面積為1的小正方形拼成一個面積為2的大正方形的活動,也使學生感受到無理數是從現實世界中抽象出來的,是一種不同于有理數的數。 出現以后,一個很自然的問題,就是要討論 的大小。教科書采用夾逼的方法,利用不足近似和過剩近似來估計 的大小,通過一步一步的估計,得到a的越來越精確的近似值,進而指出 是一個無限不循環小數的事實,同時指出 等也是無限不循環小數等,這就為后面認識無理數打下基礎。會使用計算器求數的算術平方根是本章的一個教學要求,教科書通過一個例題,介紹了使用計算器求算術平方根的方法。用有理數估計無理數的大小,也是學習本章應該注意的一個問題,教科書結合一個實際例子介紹了用有理數估計無理數的常用方法。至此,教科書討論了有關算術平方根的內容,包括算術平方根的概念、求法,無限不循環小數以及用有理數估計無理數等內容。接著,教科書設置一個“思考”欄目,對平方根展開討論。在這個“思考”欄目中,要求學生算出平方等于9的數,通過對這個問題的探討,找到解決問題的方法,利用這種方法進一步求出平方等于 1,16,36……的數,由此歸納給出平方根的概念,進而引出開平方運算。開平方運算與平方運算是互逆運算,教科書通過舉例分析了這兩種運算的互逆過程,并用圖示進一步說明。最后,教科書結合具體例子,通過具體計算一些數的平方根,探討了數的平方根的特征,并通過一個“歸納”欄目,要求學生自己歸納給出 “正數的平方根有兩個,它們互為相反數,0的平方根是0,負數沒有平方根”等這些數的平方根的特征。
教科書第二節是立方根。對于立方根,教科書采用了與討論平方根類似的方法進行討論。首先設置一個問題情景,從這個問題情景中抽象出數學問題,就是已知立方體的體積求它邊長的問題,這是一個典型的求數的立方根的問題。這樣教科書就從這個典型問題引出立方根的概念和開立方運算。接著,教科書類比著平方運算與開平方運算的互逆關系,探討了立方運算與開立方運算的互逆關系,并通過一個“探究”欄目,學習求數的立方根的方法。在這個“探究”欄目中,要求學生分別計算一些正數、負數和0的立方根,通過這些計算,一方面讓學生學習利用立方運算與開立方運算的互逆關系求立方根的方法,另一方面也為下面探討數的立方根的特征作準備。緊接著這個“探究”欄目,教科書設置了一個“歸納”欄目,由學生歸納給出“正數的立方根是正數,負數的立方根是負數,0的立方根是0”等這些數的立方根的特征。最后,教科書介紹了立方根的符號表示,并利用這種符號表示探討了立方根的一條性質。
學習了平方根、立方根以及開方運算后,教科書在第三節安排了實數。本節首先設置一個“探究”攔目,要求學生將一些有理數轉化為小數的形式,分析這些小數的共同特點,通過分析發現有理數都可以化成有限小數或無限循環小數的形式,然后指出反過來的結論也成立,即任何有限小數和無限循環小數都是有理數,這樣教科書就將有理數與有限小數和無限循環小數統一起來。在此基礎上可以指出,像 等只能化成無限不循環小數的數就是無理數,從而引出無理數的概念。教科書采用這種與有理數對照的方法引出無理數,有利于揭示有理數和無理數的本質區別,也有助于學生理解“有理數和無理數統稱實數”這個構造性定義。接下去,教科書根據不同的標準對實數進行分類,揭示實數的內部結構。隨著無理數的引入,實數概念的出現,數的范圍由有理數擴充到實數,在這個擴充過程中,既體現了概念、運算等的一致性,又體現了它們的發展變化。教科書通過幾方面的例子說明了這種一致性和發展變化。首先,教科書通過探究在數軸上畫出表示 的點,說明了無理數也可以用數軸上的點來表示,并指出當數由有理數擴充到實數后,直線上的點與實數就是一一對應的、平面上的點與有序實數對也是一一對應的;接著,教科書通過設置思考問題,讓學生體會,在有理數范圍內成立的`一些概念(如絕對值、相反數等)在實數范圍內仍然成立;最后,教科書結合具體例子說明,有理數的運算(如加、減、乘、除、乘方運算等),以及運算律、運算性質(如交換律、分配律、結合律等)在實數范圍內仍然成立,并且可以進行新的運算(如正數和0可以進行開平方運算、任何一個實數可以進行開立方運算)等。
與原教科書相比,本章內容在原教科書“數的開方”一章的基礎上,適當增加了有關實數運算的內容(實數的運算在本套書“二次根式”一章繼續學習),說明了平面內點與有序實數對一一對應以及在實數范圍內的平移變換等;從內容安排上看,改變原教科書先講平方根,將算術平方根作為平方根一種特例的做法,而是從實際出發,先講算術平方根,再將平方根,加強了與實際的聯系;在教學目標方面,強調所有學生都應會使用計算器進行開方運算,加強對估算的要求等。
三、教學目標和教學重點、難點分析
(一)、本章教學目標
1.了解算術平方根、平方根、立方根的概念,會用根號表示數的算術平方根、平方根、立方根;
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的平方根,會用立方運算求某些數的立方根,會用計算器求平方根和立方根;
3.了解無理數和實數的概念,知道實數與數軸上的點一一對應,有序實數對與平面上的點一一對應;了解數的范圍由有理數擴大到實數后,一些概念、運算等的一致性及其發展變化;
4.能用有理數估計一個無理數的大致范圍。
2、單元教學的重難點:
教學重點:
1、平方根和算術平方根的概念。平方根是開方運算基礎,是引入無理數的準備知識。平方根概念的正確理解有助于符號表示的理解,是正確求平方根運算的前提,而且直接影響到二次根式的學習。。算術根的教學不但是本章教學的重點,也是今后數學學習的重點。在后面學習的根式運算中,歸根結底是算術根的運算,非算術根也要轉化為算術根。
2、立方根的概念與性質及求法。立方根是奇次方根典型類型,掌握立方根是理解的n次方根的基礎。由于學習了平方根的概念的基礎上學習立方根的概念,學生比較容易接受,但平方根和立方根的性質區別較大,性質掌握的好壞決定了求解立方根的能力,因此教學重點放在立方根具有唯一性(實數范圍內)的討論上。
3、無理數和實數的概念。引入無理數使數域擴充到實數域,初中的所有數的運算均在實數范圍內進行的。無理數概念的理解決定實數概念的理解,有利于實數分類和運算的掌握。要讓學生掌握關于有理數的運算律和運算性質再實數范圍內仍成立,這是中學數學的基礎。
教學難點:
1、平方根與算術平方根的區別于聯系。首先這兩個概念容易混淆,而且各自的符號表示意義學生不是很容易區分,教學中要抓住算術平方根式平方根中正的那個,講清各自符號的意義,區分兩種表示的不同。對于平方根運算不僅數有限制,而且結果有兩個,這是與以前學過的數的運算很大的區別,要讓學生真正理解有一定的困難。
2、立方根的唯一性及負數立方根的意義。由于平方根的學習,學生容易錯誤的得出立方根與平方根的結論相似,因此要對比講解兩者的區別:對于任何一個數都有唯一的立方根,而且學生難于理解負數立方根的意義,應注意從立方與開立方互為逆運算的角度分析。
3、無理數和實數的理解。無理數和實數比較抽象,尤其是無理數不能像實數那樣具體描述出某個數的特點,在學生思維中想象不出它的存在,借助實數和數軸上的點一一對應,注意通過具體數加以解釋。實數抽象程度較高,學生對實數意義有所了解就可以。
四、單元教學思路及策略:
(一)加強與實際的聯系
本章內容與實際的聯系是非常密切的。例如,無理數是從現實世界中抽象出來的一種數,開平方運算和開立方運算也是實際中經常用到的兩種運算,用有理數估計無理數的大小在現實生活中經常遇到等等。因此,本章內容在編寫時注意聯系實際,對于一些重要的概念和運算緊密結合實際生活展開,例如算術平方根是從已知正方形的面積求它邊長、立方根是從已知立方體的體積求它邊長等典型的實際問題引出的,再如用有理數估計無理數的大小也是緊密結合實際進行的。編寫時,將本章內容與實際緊密聯系起來,可以使學生在解決實際問題的過程中,認識實數的有關概念和運算。
(二)加強知識間的縱向聯系
本章內容屬于“數與代數”這個領域,有關數的內容,學生在七年級上冊已經系統地學過有理數,對有理數的概念和運算等有了較深刻的認識,本章是在有理數的基礎上學習實數的初步知識,本章很多內容是有理數相關內容的延續和推廣,因此,本章編寫時,注意加強知識間的相互聯系,使學生更好地體會數的擴充過程中表現出來的概念、運算等的一致性和發展變化。例如,對于絕對值和相反數的概念,實數的運算法則和運算性質,平方與開平方、立方與開立方的互為逆運算關系等都是在有理數的基礎上展開的。另外,本章前兩節“平方根”“立方根”在內容上基本是平行的,因此,編寫 “立方根”這節時,充分利用了類比的方法,例如類比平方根的概念的引入方式給出立方根的概念,類比開平方運算給出開立方運算,類比平方與開平方運算的互逆關系研究立方與開立方運算的互逆關系等。這樣的編寫方法,有助于加強知識間的相互聯系,通過類比已學的知識學習新知識,使學生的學習形成正遷移。
(三)留給學生探索交流的空間
根據本章內容的特點,對于一些重要的概念和結論,編寫時注意了讓學生通過觀察、思考、討論等探究活動歸納得出結論的過程。例如,對于平方根概念的引入,教科書首先通過一個問題情景,引出已知正方形的面積求邊長的問題,接著又讓學生通過填表的方式,計算幾個不同面積的正方形的邊長,使學生感受到這些問題與以前學過的已知正方形的邊長求面積的問題是一個相反的過程,并由此指出,這些問題抽象成數學問題就是已知一個正數的平方,求這個正數的問題,并在此基礎上給出算術平方根的概念,這樣就讓學生通過一些具體活動,在對算術平方根有些感性認識的基礎上歸納給出這個概念。再比如,在討論數的立方根的特征時,教材首先設置“探究”欄目,在欄目中以填空的方式讓學生計算一些具體的正數、負數和0的立方根,尋找它們各自的特點,通過學生討論交流等活動,歸納得出“正數的立方根是正數,0的立方根是0,負數的立方根是負數”的結論,這樣就讓學生通過探究活動經歷了一個由特殊到一般的認識過程,在探究活動的過程中發展思維能力,有效改變學生的學習方式。
三、幾個值得關注的問題
(一)把握教學要求
本冊書對于某些內容采用提前滲透、逐步提高的編寫方式。例如,對于平面直角坐標系,在第6章“平面直角坐標系”中研究了平面內的點與有序數對的對應關系,其中點的坐標都是有理數,在本章將把點的坐標由有理數的情形擴展到實數范圍,并建立平面內的點與有序實數對的一一對應關系,為后續學習函數的圖象、函數與方程和不等式的關系等打下基礎。
對于平移變換,教課書在第5章“相交線與平行線”中安排了一節“平移”,探討得出“平移前后的兩個圖形的對應點的連線平行且相等”等平移變換的基本性質,又在第6章“平面直角坐標系”中安排了用坐標方法研究平移的內容,從坐標的角度進一步認識平移變換,這時平移中遇到的坐標都是有理數的情況。在本章,由于建立了點與有序實數對的一一對應關系,本章又在實數范圍內研究平移的內容,為后續學習利用平移變換探索平面圖形的幾何性質以及綜合運用幾種變換(平移、旋轉、軸對稱、相似等)進行圖案設計等打下基礎。
本章還通過一個例題學習了實數的簡單運算,安排這個例題的目的是要說明有理數的運算法則和運算性質等在實數范圍內仍然成立,關于實數的運算在后面的“二次根式”一章中還要繼續研究。
另外,本章也提前滲透了一些數學思想和方法。比如,本章的數學活動1,涉及到勾股定理的內容,讓學生利用勾股定理,在數軸上畫出表示幾個無理數的點。這里只是結合無理數滲透了勾股定理,關于勾股定理以后還要進行專門的研究。
綜上所述,本章教學時要注意把握教學要求,以一種發展的、動態的觀點看待教學要求,不能要求一次到位。
(二)發揮計算器的作用,加強估算能力的培養
使用計算器進行復雜運算,可以使學習的重點更好地集中到理解數學的本質上來,估算是一種具有實際應用價值的運算能力。提倡使用計算器進行復雜運算,加強估算,綜合運用筆算、計算器和估算等方式培養學生的運算能力,是本章的一個教學要求。為了達到這個教學目的,本章專門安排了利用計算器求數的平方根和立方根以及利用有理數估計無理數的大致范圍等內容。因此,教學中可以結合具體內容,綜合利用各種途徑培養學生的運算能力。
(三)重視人文教育
無理數的發現引發了數學史上的第一次危機,是數學發展史上的重要里程碑。無理數的發現經歷了一個漫長而艱苦的過程,在發現無理數的過程中,體現了人類為追求真理而不懈努力的精神。因此,教學時可以結合無理數的發現,挖掘數學知識的文化內涵,使學生感受豐富的數學文化,開闊他們的眼界,增長他們的見識。
另外,本章編寫時注意加強與實際的聯系,在選擇素材時,力求選取學生感興趣的和富有時代氣息的實際問題。例如,本章選擇了我國神舟5號載人飛船取得圓滿成功的素材,通過這個素材可以使學生從數學的角度更多地了解航天知識,培養學生的民族自豪感和愛國主義情操,激勵學生更加努力地學習,這樣使學生在學習數學的同時,也得到了人文方面的教育。
【冀教版初二數學實數教學計劃】相關文章:
數學冀教版教學計劃09-08
冀教版《數學》教學設計06-13
冀教版初三數學上的教學計劃01-29
冀教版科學的教學計劃03-29
冀教版科學教學計劃05-04
冀教版科學教學計劃01-19
冀教版初中數學說課稿02-26
冀教版數學說課稿范本03-25
中國冀教版數學教學反思01-03