亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初三上冊數(shù)學(xué)等腰梯形的性質(zhì)和判定教學(xué)計劃

時間:2021-06-13 11:48:00 教學(xué)計劃 我要投稿

蘇教版初三上冊數(shù)學(xué)等腰梯形的性質(zhì)和判定教學(xué)計劃范文

  教學(xué)目標(biāo):

蘇教版初三上冊數(shù)學(xué)等腰梯形的性質(zhì)和判定教學(xué)計劃范文

  1.知識與技能:

  (1)能證明等腰梯形的性質(zhì)和判定定理

  (2)會利用這些定理計算和證明一些數(shù)學(xué)問題

  2.過程與方法:

  通過證明等腰梯形的性質(zhì)和判定定理,體會數(shù)學(xué)中轉(zhuǎn)化思想方法的應(yīng)用。

  3.情感態(tài)度與價值觀:

  通過定理的證明,體會證明方法的多樣化,從而提高學(xué)生解決幾何問題的能力。

  重點(diǎn)、難點(diǎn):

  重點(diǎn):等腰梯形的性質(zhì)和判定

  難點(diǎn):如何應(yīng)用等腰梯形的性質(zhì)和判定解決具體問題。

  教學(xué)過程

  (一)知識梳理:

  知識點(diǎn)1:等腰梯形的性質(zhì)1

  (1)文字語言:等腰梯形同一底上的兩底角相等。

  (2)數(shù)學(xué)語言:

  在梯形ABCD中

  ∵AD∥BC,AB=CD

  ∴∠B=∠C

  ∠A=∠D(等腰梯形同一底上的兩個底角相等)

  (3)本定理的作用:在梯形中常用的添加輔助線——平移腰,可以把梯形化歸為一個平行四邊形和一個等腰三角形;從而利用平行四邊形及等腰三角形的有關(guān)性質(zhì)解決有關(guān)問題。

  知識點(diǎn)2:等腰梯形的性質(zhì)2

  (1)文字語言:等腰梯形的兩條對角線相等

  (2)數(shù)學(xué)語言:

  在梯形ABCD中

  ∵AD∥BC,AB=DC

  ∴AC=BD(等腰梯形對角線相等)

  (3)本定理的作用:利用等腰梯形的性質(zhì)證明線段相等,以及平移其中一條對角線化梯形為一個平行四邊形和一個等腰三角形從而解決有關(guān)線段的相等和垂直。

  知識點(diǎn)3:等腰梯形的判定

  (1)文字語言:在同一底上的兩個角相等的梯形是等腰梯形。

  (2)數(shù)學(xué)語言:在梯形ABCD中∵∠B=∠C

  ∴梯形ABCD是等腰梯形(同底上的兩個角相等的梯形是等腰梯形)

  (3)本定理的作用:在梯形中常用添加輔助線——補(bǔ)全三角形把原來的梯形化為兩個三角形

  (4)說明:

  ①判定一個梯形是等腰梯形通常有兩種方法:定義法和定理法。

  ②判定一個梯形是等腰梯形一般步驟:先判定四邊形是梯形,然后再判定“兩腰相等”或“同一底上的兩個角相等”來判定它是等腰梯形。

  【典型例題】

  例1. 我們在研究等腰梯形時,常常通過作輔助線將等腰梯形轉(zhuǎn)化為三角形,然后用三角形的知識來解決等腰梯形的問題。

  (1)在下面4個等腰梯形中,分別作出常用的4種輔助線(作圖工具不限)

  (2)在(1)的條件下,若AC⊥BD,DE⊥BC于點(diǎn)E,試確定線段DE與AD,BC之間的數(shù)量關(guān)系。并證明你的.結(jié)論。

  解:(1)略。

  (2)DE=(AD+BC)

  過D作DF∥AC交BC延長線于點(diǎn)F

  ∵AD∥BC,∴四邊形ACFD是平行四邊形

  ∴AD=CF, AC=DF

  ∵AC=BD

  ∴BD=DF

  又∵AC⊥BD,∴BD⊥DF即△BDF為等腰直角三角形

  ∵DE⊥BF,則DE=BF,

  ∴DE=(BC+CF)=(BC+AD)

  例2. 如圖,鐵路路基橫斷面為等腰梯形ABCD,已知路基AB長6m, 斜坡BC與下底CD的夾角為60°,路基高AE為,求下底CD的寬。

  解:過點(diǎn)B作BF⊥CD于F

  ∵四邊形ABCD是等腰梯形

  ∴BC=AD

  ∵BF=AE,BF⊥CD,AE⊥CD

  ∵Rt△BCF≌Rt△ADE

  在Rt△BCF中,∠C=60°

  ∴∠CBF=30°

  ∴CF=BC即BC=2CF

  ∴BC2=CF2+BF2

  即∴CF=2

  ∵AB∥CD,BF⊥CD,AE⊥CD

  ∴四邊形ABFE是矩形

  ∴EF=AB=6m

  ∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

  例3. 已知如圖,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延長線相交于G,CE⊥AG于E,CF⊥AB于F

  (1)請寫出圖中4組相等的線段。(已知的相等線段除外)

  (2)選擇(1)中你所寫的一組相等線段,說說它們相等的理由。

  解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

  (2)證明AG=BG,因?yàn)樵谔菪蜛BCD中,

  AB∥DC,AD=BC,所以梯形ABCD為等腰梯形

  ∴∠GAB=∠GBA

  ∴AG=BG

  課堂小結(jié):

  本節(jié)課的學(xué)習(xí)要注意轉(zhuǎn)化的思想方法,有關(guān)等腰梯形的問題往往通過作輔助線將其轉(zhuǎn)化為更特殊的四邊形和三角形,常見辦法是平移腰,延長腰,作高分割,平移對角線等方法。

【初三上冊數(shù)學(xué)等腰梯形的性質(zhì)和判定教學(xué)計劃】相關(guān)文章:

等腰梯形的性質(zhì)和判定教案11-17

數(shù)學(xué)“等腰梯形的判定”教案09-09

等腰梯形的性質(zhì)09-30

九年級數(shù)學(xué)等腰梯形的性質(zhì)和判定教學(xué)反思08-27

初中數(shù)學(xué)《等腰梯形的判定》教案設(shè)計06-16

等腰梯形的周長公式及性質(zhì)09-14

等腰三角形的性質(zhì)和判定教學(xué)計劃03-07

數(shù)學(xué)梯形的性質(zhì)說課稿06-13

什么梯形叫做等腰梯形08-24