亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

簡易方程教學反思

時間:2022-06-20 16:11:45 教學反思 我要投稿

簡易方程教學反思(精選20篇)

  身為一名優秀的人民教師,我們需要很強的教學能力,教學反思能很好的記錄下我們的課堂經驗,那要怎么寫好教學反思呢?下面是小編為大家整理的簡易方程教學反思,希望能夠幫助到大家。

簡易方程教學反思(精選20篇)

  簡易方程教學反思 篇1

  本課為人教版第四單元教學內容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質來教學解方程。

  形如x±a=b一類的方程利用等式的基本性質一學生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質二學生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學生就無從下手了,如果利用等式的基本性質解,方程變形的過程及算理解釋比較麻煩。解決問題時當需要列出形如a-x=b或a÷x=b的方程時,我就要求學生根據實際問題的數量關系,列成形如x+b=a或bx=a的方程。

  但我覺得回避這兩類問題不是很好的方法,否則,我們的教學就會顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學生們都不假思索地列出了128÷x=8,但是利用等式的基本性質學生就不會解,但你也不能說這個方程列錯了呀。

  因此我當有學生列了a-x=b或a÷x=b的方程時,我借機教了利用算術思路解方程(被減數=差+減數,被除數=商...除數)介紹老板教材的解方程的方法。基礎好的孩子就容易接受新的方法,而基礎差的孩子就還是無法解答此類問題。

  另外教材要求,在學生用等式基本性質解方程時,方程的變形過程應該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。因為用等式基本性質解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復雜的方程,其解的過程就顯得太繁瑣了。

  看來教材利用等式的基本性質來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請不吝賜教!

  簡易方程教學反思 篇2

  《解方程》是人教課標版小學數學五年級上冊第四單元內容,本節課是在學生學習了用字母表示數和方程的基礎上進行教學的,新課程的解方程一改以往的由加減乘除各部分之間的關系的引入方法,運用更能讓學生明白的天平平衡的原理來引入。解題的基本原理從未改變——等式的基本性質,即:方程的兩邊同時加上或減去相同的數,除以或乘以同一個不為零的數,方程的兩邊仍相等。

  這節課內容不是新內容,但方法卻是新方法,我認為設計教學時應將“方程的解”和“解方程”這兩個概念放到例題1的后面引入,能使學生對概念理解更充分,印象更深刻。

  教學中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數,天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例1,讓學生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多種,改怎么辦?”,引導學生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數呢?學生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調了一遍,我們的目標是求一個x的多少,所以要把多余的3減去,為了不耽誤更多的時間,我沒有繼續深入探究。接下來教學例2,同樣我利用天平原理幫助學生理解,在學生說出要把天平兩端平均分成3分,得到每份是6的基礎上,我用課件演示了分的過程,讓學生把演示過程寫出來,從而解出方程。在此基礎上我引導學生總結天平保持平衡的道理,得到等式的基本性質:方程的兩邊同時加上或減去相同的數,除以或乘上同一個不為0的數,方程兩邊仍然相等。當學生的解題方法得到了教師的肯定,讓學生明白這種解題方法的優缺點。培養學生的創新能力和自主學習的能力讓學生成為課堂的主體,教師充分發揮主導作用。

  按理說,只要稍加類推,學生應該能掌握方程的解法。但接下來的練習卻大大出人意料,除了少數成績較好的學生能按照要求完成外,大部分幾乎不會做,甚至動不了筆。問題出在哪里?經過認真反思總結如下:

  一是從天平過渡到方程,類推的過程學生理解不透,天平兩端同時減去3個方塊,就相當于方程兩邊同時減去3,這個過程寫下來時,要強調左右兩邊原來狀態保持不變,要原樣寫下來,如果這樣的話就不會造成有的學生不會格式;

  二是對為什么要減去3討論不夠,雖然有學生回答上來了,我應該能覺察出學生理解有困難,課件和天平能讓學生懂得方程兩邊要同時減去相同的數,至于為什么這里要減去3卻還似懂非懂,如果當時舉例說明也許很有效果,比如:x-3=6,我們該怎么辦呢?學生通過對比討論,就會發現我們要求出一個x是多少,就要根據方程的具體情況,若比x多余的就要減去,不足x的就要補足,這樣效果肯定好些。

  三是備學生環節出現差錯,這部分內容應該不難,但學生的現有基礎是確定教學方法的基礎,從教學效果看,我明顯做的不夠。

  四是教學內容確定不恰當,本來我是想,上公開課要有一定的容量,就把例1和例2放在一起教學,既有加減,又有乘除的,只教學加法和乘法的,減法和除法的解法,讓學生通過遷移類推的方法的解決。由于我班學生是本期從各個地方轉來的,基礎參差不齊,而且整體水平較差,因此安排兩個例題有難度。

  簡易方程教學反思 篇3

  本課的教學重點是感悟用字母表示數的意義,能用含有字母的式子表示簡單的數量關系。我由視頻導入,通過撲克牌,讓學生自主發現,字母可以表示數,并在一定的情境中表示一個確定的數。提出:新學習的內容里面的字母還表示一個確定的數嗎?讓學生帶著這樣一個疑問進入新課。

  在教學的整個過程中,我以學生感興趣的哆啦A夢和時光機貫穿始終。兒歌這一環節讓學生再次感受用字母表示數的優越性。介紹數學家韋達,讓學生感受悠久的數學文化。最后欣賞生活中的字母圖片,讓學生感受數學來源于生活,并服務于生活。

  整個課堂趣味性十足,環節顯得不那么枯燥。但也有不足之處:

  (1)在讓學生用一個式子表示出爸爸的年齡時,我提的問題不具有引導性。所以,我在巡視的時候,能列出式子的同學很少。

  (2)在練習這一環節,我只關注了學生做題的結果,忽略了學生做題的過程。應該讓他們自己說一說做題的思路,過程。

  (3)在小結的時候,我提的問題有點抽象,不夠直白,學生不太明白什么意思,所以很少有學生能答上來。

  簡易方程教學反思 篇4

  本節課例題的教學注意利用三個等量關系列出三個不同的方程,讓學生自主討論、列出,并利用學過的解方程知識嘗試解方程。注意讓學生比較選擇,讓學生明了順著題意列方程更簡潔。注意讓學生總結用方程解決問題的步驟,引導總結出五大步驟后,進一步引導出每一個步驟取一個字,進而總結為“設、找、列、解、驗”,比數學課本上總結的步驟更加簡潔容易記憶。

  在列方程解決實際問題的教學過程中,教師教的重點和學生學的重點,不在于“解”,而在于“學解”。注重的是解決問題的過程。也就是說,要讓學生經歷尋找實際問題中數量之間的相等關系并列方程解答的全過程。

  本節課的教學設計,注重讓學生分析條件、問題,讓學生首先理解題意,然后讓學生通過分析、交流、討論等活動,找出等量關系,充分展示他們的思維過程,發展思維能力。 應用題的教學難點就是:如何引導學生理解題意,列出需要的數量關系式或等量關系式。在這個過程中,重要的并不是展示學生的方法如何多,因為解決辦法是可以舉一反三的,重要的應該是引導學生如何通過分析,找出等量關系式的過程。同時,在分析過程中,讓學生掌握多種辦法來分析。如通過抓關鍵句、關鍵詞、關鍵字列等量關系式。

  本節課教學設計注意總結回顧方法,讓學生總結用方程解決問題的步驟,引導總結出五大步驟后,進一步引導出每一個步驟取一個字,進而總結為“設、找、列、解、驗”,比數學課本上總結的步驟更加簡潔容易記憶。

  在小組合作方面,本節課主要在分析等量關系,根據等量關系列方程兩個環節給孩子們小組合作探討交流的時間。縱觀本節課小組合作有利于學生理解掌握題中的數量關系,找出等量關系,根據等量關系列方程。我們學校本學期開展的是基于導學案學習基礎上的小組合作學習,導學案有三分之二的學生能基本完成,三分之一的學生基本不做、做的很少、干脆不做。導學案的學習非常有利于學生的學習,能加快上課的節奏,加大練習量,但對于不預習、不做導學案的學生上課效果大打折扣。基于導學案學習出現的現象是“優者更優”,“弱者被動挨打”“積弱者更弱”。關鍵是怎樣調動學生積極性,怎樣讓家長配合老師,讓學生做好提前預習,讓學生提前預習好導學案。這樣才能目的效果兼收。

  簡易方程教學反思 篇5

  現行第九冊數學是新課程標準教材實施改革新內容,其中的利弊在于:

  1、教改方向有點聚向七年級的教學方法,意圖是與七年級的教學接軌,這種設計本來是一件好事,讓小學生盡快接受初中一年級(七年級)教學方法,并為七年級打下良好的學習基礎。

  2、課程改革改在五年級第一學期就有點不夠恰當了,因為五年級第一學期既沒有學約分,更沒有學六年級的倒數,這樣使教師教起來非常困難,學生對這個知識的掌握也十分艱難。如:解方程:20÷2X=10如果用舊知識來解答是非常容易的,是根據“除數=被除數÷商”,就可以求出2X。再根據“一個因數=積÷另一個因數”就可以求出X了。

  而新教材的教法是方程兩邊同時×2X,先把方程左邊的2X消去,而20÷2X×2X從小學的算理上講,應該是從左往右算,(在三至五年級學混合運算都是這樣要求學生計算的)這樣就會使學生在心理上出現矛盾,很難接受這種算法;即使學生接受了這種算法,方程的右邊出現了10×2X,這時又要在方程的兩邊同時除以10,便得到2=2X,再把2X和2調換位置,成為2X=2,然后再方程兩邊同時除以2,才求出X=1,這種算法既費時,對成績中等以下的學生又難理解,就會導致相當部分學生對這部分知識落下,并對今后的學習會都產生厭學情緒,不利于小學生對知識的掌握,更激發不起學生學習的積極性。

  3、在稍復雜的方程的內容安排上也欠妥。在這一內容上,學習解稍復雜的方程的方法和列方程解應用題同時進行,在同一節課要解決兩個對于小學生來說都是難點的學習內容,至于教師是沒問題的,但對學生來說難度就大了,首先,前面所說的解方程是比較簡單的方程,相當部分學生學得一塌糊涂,再進行學習稍復雜的方程更難掌握。

  其次,正是有稍復雜的方程解答方法不能完全掌握,在學生的心理上就有解不開的結,所以對怎樣運用好的方法去進行列出解應用題的方程,那就更難掌握,因此,有部分學生把這一知識采用的學習方法的放棄,這就不利于學生的學習,更不能達到為七年級打好基礎的目的。

  以上三點是本人在教簡易方程中感受最深的淺見,不知各位同行是否有這種感受,請各位同行多提這新教材好教學方法,本人樂意接受。謝謝!

  簡易方程教學反思 篇6

  今天早上在庫溝小學聽了張福華老師的《簡易方程的整理和復習》這節復習課。這是我第一次聽復習課,以往只是從教學策略上了解復習課的教學流程,當今天真真正正的傾聽了一節復習課后,感受頗深,所學甚多,只奈何有言吐不出,下面就簡單說一些聽完這節課的體會。

  首先,張老師的語言簡練干脆,善于利用名言名句。

  在課的開始,大屏幕上就展示出了俄國烏申斯基的一句話:“裝著一些片段的,沒有聯系的知識的頭腦,就像一個亂七八糟的倉庫,主人從那里是什么也找不出來的。”這句話的展示,讓學生一下子就了解了整理的重要性,也了解了這節課的目的所在。在回顧整理,構建網絡這一環節,張老師在讓學生自己看課本例題的知識點時又說了一句“不動筆墨不讀書”,提醒了學生看例題時可以適時的進行批畫,將遺忘的知識點突出顯示出來。在課的最后又課件展示了韋達和愛因斯坦的名言警句。

  其次,目錄歸納知識點,清楚明了。

  我想所有的老師都會頭疼復習某一單元或某一冊課本時知識點的歸納,只奈何沒有更好的方法可以把所有知識點系統的展現給學生。本節課張老師的方法讓我眼前一亮,目錄展示法,讓所有知識點的區別和聯系清楚的擺了出來,方便了學生的回顧和整理。

  最后,練習充實有趣,層次分明。

  闖關形式的練習提高了學生的積極性,激發了學生的好勝心。在一,二,三的闖關中,依次將基礎知識點,重難點進行了練習,穩固。學生在回答闖關的答案時,張老師經常會問一個為什么,引導學生對知識點進行再回顧。例如,在一名學生回答bX8等于8b時,問為什么不是b8?在學生回答aXa=a的平方時,問為什么不是2a?看似不經意的詢問,卻鞏固了細微處的知識點。

  當然,張老師的課還有許多值得我學習的地方。例如,創設了有效地復習情景,親和力強,能及時喚起回憶,將零散的知識系統化等等。通過這節課,讓我更清楚的了解了復習課的教學模式,對以后上好復習課有了更多的信心。

  簡易方程教學反思 篇7

  在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用加減乘除各部分之間的關系來求出方程中的未知數,而今的人教版 教材的設計打破了傳統的教學方法,而是借用天平使學生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數,等式仍然成立”這個規律,這樣就能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯系。在這節課的教學中,我從以下幾個方面入手:

  一、感受天平的平衡現象,悟出等式的性質變化。

  1、在學習中,我以天平的平衡來呈現等式的性質,學生能直觀形象的.理解性質,平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應用起來學生感覺比較抽象,我引導學生在反復操作中理解加、減一個數的目的和依據。

  我在天平的左側放5克砝碼,右側也放5克砝碼。(拋磚引玉)

  2、學生親自動手反復不斷的進行操作。(學生動手操作)

  在此基礎上,我再做進一步的引導。

  活動是獲取真知的有效途徑,通過以上的活動,學生可以很順利地得出結果:天平的兩側都加上相同的質量,天平仍平衡。

  3、教師:請同學們都想一想,如果天平兩側都減去相同的質量,天平會出現什么現象?你能列出幾個這樣的方程嗎?(學生同桌之間通過充分地交流,反饋交流結果,學生得知,如果我們把天平作為一個等式(當天平平衡時)的話,等式的兩邊都減去同一個數,等式仍然成立。通過引導,學生能完全得出了等式的性質。最后我們通過學生自己的整理和總結,把以上發現的性質合二為一。得出:等式的兩邊都加上(或減去)同一個數,等式仍然成立。

  二、利用等式性質解方程——初步感悟它的妙用

  在課堂上學生對用等式的性質來解方程感到很陌生,在他們原有的經驗中更喜歡用加減法各部分的關系來解,所以我們要特別注意引導學生認識到用等式的性質來解方程的優越性,從而養成用等式的性質來解方程的習慣。

  在整節課的教學中,其實學生是非常主動的,他們總覺得天平能啟發著他們去解決這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。

  告訴學生利用等式的性質來解方程熟練以后特別快。同時強調書寫格式。通過教學,學生利用等式的性質學生能解決簡單的方程,但我認為利用等式性質解方程的方法單一化,內容雖少問題很多。其表現在:

  1、從教材的編排上,整體難度下降,有意避開了形如:66-2X=30等類型的題目。把用等式解決的方法單一化了。在實際教學中我們要求學生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現X在后面的方程題了,學生在列方程解實際應用時,我們并不能刻意地強調學生不會列出X在后面的方程嗎?我們更頭痛于學生的實際解答能力。在實際的方程應用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數,真有點麻煩了。而且有的學生還很難掌握這樣方法。

  2、內容看似少實際教得多。難度下降后,看起來教師要教的內容變得少了,可實際上反而是多了。教師要給他們補充X在后面的方程的解法。要教他們列方程時怎么避免X在后面這樣方程的出現等等。因此,我干脆就又把原來的老方法交給同學們,以便備用或請他們根據具體情況選擇適當的解題方法。

  3、我個人認為:現行教材的某些地方還有待于進一步的改進與完善。

  簡易方程教學反思 篇8

  本節課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環節的設計和安排上,盡量為突破教學重點和難點服務,因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數,由此引起了學生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。

  1.本課主要對解方程進行了解題練習。通過搶奪小紅花等游戲的形式大大提高了學生學習數學的樂趣和興趣!

  2、通過本課的作業檢測,有少量學生還是對本課的內容練習不是很到位。需要教師在課下不斷的指導。

  3、學生對于方程的書寫格式掌握的很好,這一點很讓人欣喜.

  解方程是數學領域里一個關鍵的知識,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。

  而如今五年級的學生開始學習解方程,作為教師的我更應該讓學生吃透這方程,突破這重難點。在教這單元之前,我一直困惑解方程要采用初中的“移項解題,還是運用書本的“等式性質解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運算之間的關系解題,方法多了,學生該吸收那種方法呢?困惑,學生該如何下手,運用“移項解題,學生對于這個概念或許不會系統清晰,但是“等式性質解題時,在碰到a-x=b和a÷x=b此類的方程,學生能如何下手,“四則運算之間的關系老教材的方式改變,必有他的理由,能用嗎?

  困惑:我先了解改革的原因(摘自教學參考書):新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據總是加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數。到了中學又要另起爐灶,引入等式的基本性質或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數起步教學的負遷移就越明顯。因此,現在根據《標準》的要求,從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內容兩種思路、兩種算理解釋的現象,有利于加強中小學數學教學的銜接。從這不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學生清楚準確地掌握實際解題,面對題目不會盲目,而采用等式基本性質給學生帶來的是局部的銜接,而存在局部對學生會更困難,如a-x=b和a÷x=b此類的方程。

  簡易方程教學反思 篇9

  很多時候,我們大人都喜歡用方程來解題,這固然是因為到了中學大量學習了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個更重要的原因就是方程對解題思路的解放,列算式解決實際問題時,解題思路常常迂回曲折,而他從根本上讓學生脫離了繁瑣的思路分析,而列方程解決實際問題,解題思路往往直截了當,降低了思維難度,它讓學生從一個簡單的思路——找等量關系來解題。所以說,這個單元的知識如何教好,從而讓學生學好是非常重要的。

  一、用字母表示數要注意對數量關系的理解

  用字母表示數是學生學習代數初步知識的起步。在算術里,人們只對一些具體的、個別的數量關系進行研究,引入用字母表示數后,就可以表達、研究具有更普遍意義的數量關系。可以說,學習代數就是從學習用字母表示數開始的。

  對小學生來說,從具體事物的個數抽象出數是認識上的一個飛躍,而由具體的、確定的數過渡到用字母表示抽象的、可變的數,更是認識上的一個飛躍。而且,在用字母表示未知數的基礎上,使學生解決實際問題的數學工具,從列出算式解發展到列出方程解,這又是數學思想方法認識上的一次飛躍,它將使學生運用數學知識解決實際問題能力提高到一個新的水平。而在老師們的教學實踐中,由于在進行用方程解題時格式非常重要,因此往往老師們教學時都會特別強調格式。可是從學生的后續學習來看,我慢慢發現,其實在教學這一部分知識時,老師要注重學生對數量關系的理解,也就是說要加強對學生的用含字母的式子表示數量的訓練,也就是寫代數式的訓練。因為這是列方程的基礎。所以,在這里教師一定要向學生強調并反復練習用含有字母的式子表示數量,讓學生明白以往學習的所有數量關系在用含有字母的式子表示數量中都能用到。如:原來有100元,用掉X元,一樣的要用減法求還剩下多少錢,買了3個練習本,每個A元,一樣的用乘法來求一共要多少錢。讓學生在這樣的大量的練習和強化中,知道含有字母的式子的數量關系和以前是一樣的,只是現在所用的符號不一樣,其實,從廣義上來講,字母是一種符號,數字也是一種符號。

  二、注重方程的意義的教學。

  方程是什么,教材中是這樣說的,含有未知數的等式叫做方程。其實,這只是從方程的表現形式來給方程下定義。也就是說,從表象上來說,如果一個式子是一個等式,并且含有未知數,我們就說這個式子是方程。但是,從數學的本質上來說,方程的意義是什么呢?我們每個人都能夠熟練地列方程解決問題,那么,在你列方程解決問題時,你每次抓住的核心是什么呢?是等量關系。所以,方程最本質的教學意義應是同一個量(或相等的量)用不同的形式去表達。但很多時候,老師們在教學方程的意義時,往往只研究了方程的表面形式,也就是書上所說的:含有未知數的等式叫方程,所以,老師們一般都是從等式入手,讓學生在認識等式的基礎上引入未知數,然后告訴學生,象這樣的含有未知數的等式叫方程。這樣一節課教下來,學生除了會判斷一個關系式是不是方程,還知道了什么呢?這樣的學習對于后面的列方程解決問題真的有幫助嗎?我想,每個人靜下心來想想,應該都會有答案。

  三、解方程的教學時不要被以前的教材編排所影響。

  新教材對于解方程的安排是變動非常大的。以前我們是根據四則運算各部分之間的關系來解方程。一開始時,還不和學生說解方程,叫求未知數X。而現在的教材編排時是根據等式的性質來解,當然,在教材上并沒有歸納出等式的性質,畢竟,在學生的小學階段,只要讓學生明白,在等式的兩邊同時加、減、乘和除以同一個數,等式仍然成立,這并不是完整意義上的等式的性質。從學生的學習上來看,我覺得學生是比較容易接受這種方法的,特別是比較簡單的方程,學生只要明白了要把誰抵消,怎么抵消,基本上問題不大。不過,到了稍微復雜的方程出現了一些問題,這也許是我在教學這一部分內容時,因為總是考慮到學生不喜歡列方程(以往的學生都有這個問題,可能就是覺得方程的格式繁瑣,好像步驟也不少,學生總不喜歡),所以,我就想怎么讓學生少寫點字,所以,在具體的書寫格式和步驟上,和教材稍微有點不同,我沒有象教材那樣寫出怎樣應用等式的性質的那一步,而是讓學生直接寫出這一步的結果,以至于到了后面,有部分學生就出現了一些問題,特別是象5(X+3)=55這樣的方程,學生掌握得比較差,也可能是學生在用含有字母的式子表示數量時,還是沒有很好地建立這樣的一個式子是一個整體,表示一個數量這樣的概念,盡管也進行了一些強調。另一個方面就是具體的步驟可能也對學生有影響,所以,我個人認為,可能讓學生按照書上的步驟來寫盡管麻煩一點,但對于學生理清思路可能更有幫助。

  總的來說,我覺得簡易方程這個單元,只要讓學生有很好地用字母或含有字母的式子表示數的基礎,再加上對方程的本質意義有清晰的理解,知道怎樣解方程,其他的應該都不是問題,畢竟,上面的這些都是為列方程解決問題打基礎。基礎打好了,后面的問題就都能能迎刃而解了。

  簡易方程教學反思 篇10

  學生經歷由天平上的具體操作抽象為代數問題的過程,能用等式的性質(天平平衡的道理)列出方程,對于解比較簡單的方程,學生并不陌生。

  比如:x+4=7學生能夠很快說出x=3,但是就方程的書寫規范來說,有必要一開始就強化訓練,老師規范的板書,以發揮首次感知先入為主的強勢效應,促進良好的書寫習慣的形成。對于稍復雜的方程要放手讓學生去試一試,這樣就可以使探究式課堂教學進入一個理想的境界。

  不難看出,學生經歷了把運算符號+看錯成了-,又自行改正的過程,在這一過程中學生體驗到了緊張、焦急、期待,成功的感覺,這時的數學學習已進入了學生的內心,并成為學生生命成長的過程,真正落實了《數學課程標準》中在數學學習活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心的目標,在這個思維過程中,學生獲得了情感體驗和發現錯誤又自己解決問題的機會。老師以人為本,充分尊重學生,也體現在耐心的等待,熱切的期待的教學行為上,老師的教學行為充滿了人文關懷的氣息,微笑的臉龐、期待的眼神、鼓勵的話語,無時無刻不使學生感到這不僅是數學學習的過程,更是一種生命交往的過程,學生有了很安全的心理空間,不然,他怎么會對老師說老師,我太緊張了,這是學生對老師的信任和自己不安的復雜情緒的表現。反思我們的教學行為,如果在課堂中多一些耐心和期待,就會有更多的愛灑向更多的學生,學生的人生歷程中就會多一份信心,多一份勇氣,多一份靈氣。

  簡易方程教學反思 篇11

  開學兩周了,經過開學后的適應,教學工作已經逐步進入了正常軌道。其實說是適應,只是我的適應,孩子們并沒有表現出所謂的"開學綜合征",開學近兩周他們都表現得很棒!本來剛開學,擔心孩子們收不回心來,一直布置很少的一點家庭作業,甚至有時候只是布置預習而已。當然,這樣做也許也確實讓孩子們能逐漸進入學習狀態,避免出現開學倦怠或反感情緒。

  在知識方面,原來擔心孩子們對方程會有不適應或抵制情緒,結果孩子們都表現不錯。方程解法的繁瑣并沒有讓孩子們感到厭倦,因為雖說解方程書寫步驟較多,但規律明顯,順向思維不需要過多的思維過程,抓住關鍵詞列方程就迎刃而解了。最近主要的問題是形如12-X=5或56÷X=14這樣的方程,用等式的性質來解很別扭,而用傳統的方法又怕孩子混淆。其實這個問題教材在設計時早有考慮,原則上這種類型的方程不做要求,因此課本上并沒有出現這樣的題目。但孩子們在解決問題時自己會列出這樣的方程,只好臨時先提醒孩子盡量避免列出X在減數或除數位置上的方程。這樣做的目的并不是要刻意回避這種問題,而是考慮到孩子們對現在的方法還不夠熟練,不宜教給他們另外一種全然不同的解法,這個問題且等孩子們熟練掌握了解方程的方法后再說吧!反正教材是不要求做這種題的。

  還有個問題就是在解決問題時,算術方法與列方程的選擇。最近一直在學習列方程解應用題,所以孩子們想當然地每道題都列方程解答。教材上雖然有一道題目是指導孩子體驗理解用算術方法與方程方法解決問題的區別,能直接套用公式或順向思維列式的就直接用算術方法解決比較簡捷,用逆向思維考慮的問題可以用方程解決比較簡捷。可能是由于初學,或者因為沒有養成認真分析數量關系的習慣,孩子們在這方面還比較困惑,需要在以后的教學中指導孩子們逐步理解和掌握。慢慢來,不要急。

  簡易方程教學反思 篇12

  在本課教學中,我主要采用小組合作學習,討論的方式,讓學生探究新知識,效果較好。

  出示例題2,小組合作學習,討論:

  ①你是怎樣理解圖意的?

  ②你是如何列方程的?

  ③你是根據什么解方程的?

  ④怎樣檢驗方程的解是否正確?

  然后班交流討論,展示學生的練習。指名回答,說說自己的分析。你對他的分析有什么要問的嗎?教師總結解題關鍵。

  教學例3時,讓學生觀察、分析,這道題與前面的練習題比較有什么區別?這道題可以怎樣解?(先小組交流后個人解答)學生找出解題關鍵,培養一題多解的習慣與能力。

  最后讓學生做全課總結:今天學習了什么知識?解方程的關鍵是什么?

  充分練習,進行思維訓練,設計有趣的習題“幫小兔找家”:4x-12=203x=15x+7=152x+3×2=16

  18-2x=215÷3+4x=25

  鞏固知識,激發興趣。

  簡易方程教學反思 篇13

  長期以來,在小學教學解簡易方程,是依據加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數。這種方法到了中學又要另起爐灶,重新開始。根據新課標的要求,人教版教材從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法,使學生擺脫算術思維方法中的局限性,有利于加強中小學的知識銜接。

  猜想是學生學習數學的一種重要方式,通過讓學生綜合已有的知識和經驗的基礎上經歷等式的變化過程,不僅讓學生體會到數學來源于生活,還為猜想等式的性質奠定了良好的基礎。學生一旦作出了猜想,就會迫不及待的想去驗證自己的猜想是否正確,從而主動地去探索新知。

  任何猜想都必須經過驗證,才能確定是否正確,而驗證的過程也正是學生主動學習探索數學知識的過程。學生通過自己動手用天平稱一稱,驗證自己的猜想,以一種自主探究的方式進一步認識了等式的性質,為后面學習解方程奠定了良好的基礎。“舉出生活中的例子”體現了數學來源于生活,學到的數學知識也要應用到生活當中去的理念,讓學生體會到數學就在自己的身邊。這樣的設計不但極大地激發了學生的學習興趣,還有利于培養學生的自主探究能力和創新能力。

  學生在合作操作中,已經對解方程有了一定的基礎和認識,能夠大概地說出解方程的過程和依據,而又一次讓同學之間同桌說一說后再全班交流體現了本節課的學習重點“理解并利用等式的性質解方程”,“為什么要減去3”突破本節課的難點。在這個環節中教師還有針對性地指導了書寫的規范性和檢驗的過程。師生之間的共同探討,顯示了一種平等的師生關系。

  練習中學生加深了對“方程的解”的認識,抓住了利用等式的性質這一依據去解方程。不同層次的練習照顧了學生之間學習水平的差異,3X=8.4對等式的性質進行了拓展,有利于發散學生的思維。最后交流學習的收獲促進了學生形成積極的學習心理。

  簡易方程教學反思 篇14

  解方程是數學領域里一塊兒重要內容,在實際生活中,學會了列方程解決問題之后,很多不易用算術方法解答的習題,卻能列方程很容易地解答出來,這足以說明列方程解決問題比算術法解決問題有非常明顯的優越性。

  今年我教的是四年級,所用教材是青島版五四制教材,第一單元就出現了解方程的內容,這部分教材我已經教學了四遍了,按理說這第五次教學這部分內容應該是易如反掌、揮灑自如,可是面對新教材的設計,我這個五年不教學高年級的老師卻有了很大困惑----本教材的教學設計打破了傳統的教學方法,而出乎我預料的則是借用天平演示使學生感悟“等式”,知道“等式兩邊都加上或減去都乘或除以同一個非零的數,等式仍然成立”這個規律,從而使學生進一步從真正意義上理解方程的意義,并學會運用等式的性質解方程。在以前幾輪教材中,學習解方程之前都是先要求學生熟練掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數=和-另一個加數;被減數=減數+差;減數=被減數-差;被除數=商×除數;除數=被除數÷商等關系式來求出方程的解,就連我自己小時候學習的解方程也都是根據加減、乘除法各部分之間的關系求方程的解的。

  開始我有些懷疑,以為只有青島版五四制這個版本的教材利用了等式的性質教學的,于是急切的打開電腦找到各種版本的電子教材翻看這部分內容,卻發現各種版本的教材設計思路是一樣的,都是先學習等式的基本性質,接著再運用等式的基本性質解方程。為了徹底弄明白教材的編寫意圖,我又找到了這幾個版本的教材所配套的教師教學用書翻看,新教材編寫者大致都是這樣解釋的:長期以來,小學教學簡易方程時,方程變形的依據總是加減、乘除運算之間的關系,這實際上是用算術的思路求未知數。到了中學又要另起爐灶,引入等式的基本性質或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數起步教學的負遷移就越明顯。因此,現在根據《標準》的要求,從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內容兩種思路、兩種算理解釋的現象,有利于加強中小學數學教學的銜接。看了這些內容,我才從思想上認可了這種設計思路,原來是為了使小學教學解方程和中學教學解方程的方法保持一致。

  理解了教材的設計意圖,我開始強迫自己扭轉老的教學思路。結果學生因為是初次接觸,課堂上學習的竟是那樣的有滋有味。但在后面的教學中,我漸漸發現采用等式的基本性質解方程給學生帶來的竟然是局部的銜接,而存在局部的銜接對學生會更困難。從教材的編排上,整體難度雖然有所下降,卻把用等式的性質解方程的方法單一化了。教材有意避開了形如a—x=b a÷x=b等類型的題目,不教學此類方程的求解方法,因為這類題目如果采用等式的性質來解非常麻煩。很顯然采用等式的性質這種方法教學小學階段的解方程目前存在著很大的局限性。

  但在教學列方程解決實際問題時,我們又不能避免學生在列方程時,依然出現形如a-x=b和a÷x=b的方程,特別是我們不能刻意地給學生強調不能列出x在后面做減數或做除數的方程,如果這樣強調,學生心中會存在很大的疑惑,當學生列出這樣的方程時,我們更頭痛于學生求解能力的局限性。

  鑒于以上原因,課堂上我采用了新老教學思路結合使用的方法,先從教材中的新思路運用等式的基本性質教會孩子解較簡單的方程,以便于日后初中學習時順利接軌,同時對于初中學習“移項”也能順利接收。但是面對現在四年級孩子的思維及接受能力,我再利用老教材的教學思路“加減、乘除法各部分之間的關系”教給孩子解方程,至少這樣能讓我的學生會解各種類型的方程,特別是有利于孩子們列方程解決實際問題,他們不會再被“以乘代除”、“以加代減”的思路困擾著列方程,并且列出來還能順利解這個方程。

  我個人以為,這樣用新舊方法結合著教學,既能讓學生為以后的學習做好銜接,形成綠色的通道,同時又體現解決同一問題方法、思路的多樣性。通過學生的課堂作業,我發現教學效果出奇的好。

  通過解方程這部分內容的教學,我感到不論你的教齡有多長,你對同一教學內容教學了有幾遍,每次教學都需要教師靜下心來好好的研究教材教法,這樣才能用最適合學生未來發展的方法去教學生。

  簡易方程教學反思 篇15

  長期以來,小學教學簡易方程時,方程變形的依據總是加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數。到了中學又要另起爐灶,引入等式的基本性質或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數起步教學的負遷移就越明顯。因此,現在根據《標準》的要求,從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內容兩種思路、兩種算理解釋的現象,有利于加強中小學數學教學的銜接。通教材的老師也主張用等式的基本性質解方程。

  在我的教學過程中卻出現了這樣的問題 ,利用等式的基本性質解形如x+a=b與x-a=b, ax=b與x÷a=b一類的方程,學生方法掌握起來比較簡單。但寫起來比較繁瑣。然而遇到a-x=b、a÷x=b的方程時,由于小學生還沒有學習正負數的四則運算,如果利用等式的基本性質解,方程變形的過程及算理解釋比較麻煩;但是在教學過程中我們不可避免地會遇到根據現實情境從順向思考列出X當作減數、當作除數的方程,要學生學會解這些方程,是正常的教學要求,這是不應該回避的,否則,我們的教學就會顯得片面和狹隘。于是,我又要求學生遇到X當作減數、當作除數的方程時,要求學生會用減法和除法各部分之間的關系來做。但是,我發現這讓有些孩子無所適從。我現在感到很困惑,我們到底怎樣做才是合理得呢?懇請各位老師指教。

  簡易方程教學反思 篇16

  在教現行人教版九年制義務教育小學數學第九冊《簡易方程》時,發現現行教材與以往版本不同:

  以往的教法是利用“兩個加數相加,求一個加數就用和減去另一個加數,即:加數=和-加數;兩個因數相乘,求一個因數就用積除以另一個因數,即:因數=積÷因數”;

  現行的教法和初中類似,即:解方程時利用方程兩邊同時加上或減去一個數或同時乘以或除以一個不為零的數方程兩邊的值不變,但具體解題中與初中不同的是不提移項與合并同類項,思想方法卻是相同的。

  在教學中發現小學生對這種方法掌握較困難,主要表現在:

  第一,用字母表示數不好接受,不易理解,也不習慣;

  第二,用代數式表示一個得數或結果不理解;

  第三,字母與數,字母與字母之間的簡單運算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個數。

  我們知道算式思維與方程思維是兩種不同的思考方法,在一些復雜的問題中用算式很難解出,用方程卻簡單的多,現行小學教材中有提升方程教學的意思,旨在培養學生的思考能力,便于與初中銜接。

  教學實踐中我們發現通過練習學生還是可以掌握的很好的。

  簡易方程教學反思 篇17

  新課程的改革,使得小學的知識要體現與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。

  要求方程的解法要根據天平的原理來進行解答,也就是說要通過等式的性質來解方程,這一方法雖然說讓方程的解法找到了本質的東西。老教材中解方程的教學是利用加減乘除各部分之間的關系解決的,學生只要掌握了一個加數=和-另一個加數,減數=被減數-差,被減數=差+減數,一個因數=積÷另一個因數,除數=被除數÷商,被除數=商×除數這些關系式,不管是簡單的還是復雜的方程都可以用這些關系式去解。

  而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質,即等式的兩邊同時加上或減去同一個數等式不變,和等式的兩邊同時乘或除以同一個數(0除外),等式不變進行解方程的新教材如果能把天平的規律教學得到位,這樣就能把等式性質掌握好,等式性質掌握的好了解起方程來也有規律可循了。于是,我在教學時充分地利用天平實物以及課件讓學生深入地理解天平的平衡規律,從而順利地揭示出了等式的性質。

  這樣在解簡易方程時學生很容易掌握方法。知道未知數加(或減)一個數時,只要在方程的兩邊同時減(或加)同一個數,未知數乘(或除)一個數時,只要在方程的兩邊同時除(或乘)同一個數即可。一般不會出現運算符號弄錯的現象了。

  簡易方程教學反思 篇18

  人教版五年級上冊《解簡易方程》這個單元中,教材是通過等式的基本性質來解方程,這個方法雖然說使得小學的知識與初中的知識更加的接軌,讓方程的解法更加的簡單。從教材的編排上,整體難度下降,對學生以后的發展是有利的。但是教材中故意避開了減數和除數為未知數的方程,如:a-x=b或a÷x=b,要求學生根據實際問題的數量關系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時也會無法避免地直接和方程思想發生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲。”很多學生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應該怎么解呢?允不允許學生用四則運算各部分的關系來解方程?是否該向學生講解方法?還是讓學生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向學生傳達這樣的思想:這樣的列法是不被認可的,那么以后在學習“未知數是減數和除數的方程”時,學生的思維不就又和現在沖突了嗎?現在學習的節方程中,學生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學生,能熟練掌握并運用的學生很少,對大部分學生來說越教越是糊涂,把本來剛建構的解方程方法打破了。如果不安排,那么每次在出現的時故意回避嗎?

  在教學列方程解加減乘除解決問題第一課時,我是這樣處理的。先出示做一做的題目,這題更接近學生的實際,學生也能更好理解數量關系。小明今年身高152厘米,比去年長高了8厘米。小明去年身高多少?先讓學生讀題理解題目中有哪幾個量?引導學生進行概括,去年的身高、今年的身高、相差數。追問:這三個量之間有怎樣的相等關系呢?

  去年的身高+長高的8cm=今年的身高

  今年的身高-去年的身高=長高的8cm

  今年的身高-長高的8cm=去年的身高

  你能根據這三個數量關系列出方程嗎?學生嘗試列方程。幾乎全班學生都是正確的。

  X+8=152 152-x=8 152-8=x

  追問學生你對哪個方程有想法?學生一致認為對第三個方程有想法?

  生1:這個根本沒有必要寫x,因為直接可以計算了。

  生2:x不寫,就是一個算式,直接可以算了。

  我肯定到:列算式解決實際問題時,未知數始終作為一個“解決的目標”不參加列式運算,只能用已知數和運算符號組成算式,所以這樣的x就沒有必要。接著讓學生解這兩個方程X+8=152 、152-x=8方程。學生發現152-x=8解出來的解是不正確的。告訴學生減數為未知數的方程我們小學階段不作要求,所以你們就無法解答了。接著,我再引導學生觀察這三個數量關系,他們之間有聯系嗎?其實減法是加法的逆運算,是有加法轉變過來。因此,我們在思考數量關系時,只要思考加法的數量關系,這是順向思維,解題思路更加直截了當,降低了思考的難度。接著只要把未知數以一個字母(如x)為代表和已知數一起參加列式運算x+b=a,體會列方程解決問題的優越性。這就是我們今天學習的一種新的解決問題的方法——列方程解決問題。

  接著用同樣的教學方法探究bx=a的解決問題。

  我這樣的教學不知道是否合理?其實小學生在學習加減法、乘除法時,早就對四則運算之間的關系有所感知,并積累了比較豐富的感性經驗。要不要運用等式的性質對學生再加以概括呢?

  簡易方程教學反思 篇19

  《方程》是北師大四年級下冊第七單元《方程》的第三課時。這一內容是學生第一次接觸方程,對于四年級的學生來說有一定的難度。 因為方程的意義是一節數學概念課,概念教學是一種理論教學往往會顯得枯燥無味,但是方程與學生的生活又有密切的聯系,因此在本課教學中始終注重學生興趣的培養,讓學生感受方程與生活的密切聯系。從課前談話開始,我利用兩三分鐘與班上學生聊上幾句,輕松導入課題,消除彼此之間的緊張心情。在探究方程概念時,我放手讓學生自學課本,以天平圖,月餅圖、水壺圖整節課的主線,讓學生觀察情境圖,讓學生從這些具體的情境中獲取信息,去尋找隱含的相等關系并用自己的語言加以表述,然后嘗試用含有字母的等式—— 方程表示各個相等關系。

  讓學生親身體驗方程產生的需求,方程在運用中的優越性并成功建立數學模型,最后總結出方程的意義。得出概念后,進入練一練環節,我設計了兩個練習:一是判斷是不是方程的練習,通過學生自己合理判斷認識到方程的兩個特征缺一不可,弄清等式與方程的區別與聯系,加深學生對方程外部特征的印象,進一步體會方程的意義,加深了對方程概念的理解:二是設計了根據情境圖寫出相應的方程,借助媒體呈現一些線段圖,組織學生根據這些圖中的等量關系列出方程。

  這些題可以培養學生在現實情境里尋找等量關系的能力,也為以后運用方程知識解決實際問題打下基礎。查一查的練習是是從人類最普遍的日常生活中的衣、食、住、行這四大方面入手,把課本后的練習題套上適當的情景,激發學生學習的積極性,使得學生感受到數學就在自己的身邊。

  最后拓展題,讓學生根據所給信息提出問題,列出方程,在較復雜的問題情境中,讓學生體會算術方法解決起來比較復雜的問題,可以比較容易地通過方程表示其中的數量關系,體會方程思想的魅力。經歷方程建模的全過程,真正讓學生理解方程的含義,體驗方程思想,引領學生走方程世界。

  簡易方程教學反思 篇20

  本節課的內容是在學生學了等式的性質和解形如a+x=b x — a =b ax=bx÷a =b這樣的一般方程基礎上進行教學的。成功之處:如何解決形如a — x =b a÷x =b這樣的特殊方程,關鍵是啟發學生思考,根據哪一條等式性質,怎樣將新的問題轉化為已經解決的舊的問題。在教學中,我首先讓學生試做看看遇到了什么樣的難題,部分學生發現20—x=9解:20—x—20=9—20在解決問題的過程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當學生無從下手,不知所措的情形下,啟發學生當我們遇到新問題時怎么解決呢?學生會想到聯系前面學習的舊知識來解決,那你認為應該把這樣的減法方程轉化為什么運算的方程呢?學生很容易想到把這樣的減法方程轉化為加法方程就可以解決新問題,接著教師再緊跟著啟發學生,如何根據我們學過的知識進行轉化呢?

  通過學生思考、討論和交流,可以根據等式的性質進行轉化,從而得出:20—x=9在解決特殊方程的過程中,學生有的解:20—x+x=9+x還想到利用加減法之間的關系來解決,直20=9+x接得出9+x=20也是可以的,肯定學生的9+x =20思考方法的合理性,但是也要告訴學生,9+x—9 =20—9這樣的思考方法到了中學解決更加復雜X=11的方程就無能為力了,為了使小學和中學的知識能更好的銜接,我們重點應用等式的性質把特殊方程轉化為一般方程,然后依據一般方程的方法解決問題。不足之處:在練習中出現個別學生不注意觀察方程是一般方程還是特殊方程,導致出錯。再教設計:重點強化特殊方程的特點,讓學生在解方程的過程中首先要觀察方程的特點,然后采取相應的解決問題的方法。

【簡易方程教學反思】相關文章:

簡易方程教學反思10-06

簡易方程教學反思12-26

簡易方程的教學反思09-11

解簡易方程的教學反思05-23

《解簡易方程》的教學反思07-02

解簡易方程教學反思07-02

《簡易方程》教學反思范文09-14

《簡易方程》數學教學反思11-07

簡易方程教學反思范文10-07

《解簡易方程》教學反思04-24