亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

《3的倍數的特征》的教學反思

時間:2023-02-23 16:50:19 小花 教學反思 我要投稿

《3的倍數的特征》的教學反思(精選21篇)

  在辦理事務和工作生活中,教學是重要的任務之一,反思過去,是為了以后。反思要怎么寫呢?下面是小編幫大家整理的《3的倍數的特征》的教學反思,歡迎大家分享。

《3的倍數的特征》的教學反思(精選21篇)

  《3的倍數的特征》的教學反思 篇1

  《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。

  我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。

  我從學生的已有認知出發,引導學生先進行合理的猜想,進而引發學生從不同的角度驗證自己的猜想,通過驗證,學生自我否定了自己的猜想。此時學生處于“不憤不啟”的最佳的學習狀態,他們迫切想知道3的倍數的特征究竟是什么?這樣來調動學生學習的欲望,增強學生主動探究意識,

  有利于后面的探究學習。他們還認為在我們實際生活中,當你解決一個新問題時,一般沒有人告訴你解決這個問題會碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應用原有的知識。

  新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學生總會出現各種各樣的錯誤,我們的課堂教學不應該有意識地去避免學生犯錯誤。

  因為課堂是學生出錯的地方,出錯是學生的權利,學生的.錯誤是勞動的成果,關鍵是要看我們教師如何看待學生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學的巨大財富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應變的機智,給學生一個出錯的機會和權利。

  《3的倍數的特征》的教學反思 篇2

  《3的倍數特征》進行了兩次教學授課,第一次是新授,第二次是錄課重復授課。下面就本節課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學生編號,根據編號做游戲。由于每個學生的編號不一樣,所以在做游戲的時候,每個學生集中注意力,傾聽游戲要求,激發了學生的學習興趣。設置游戲的目的是復習2或5倍數的特征,

  同時,對3的倍數特征的學習產生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學生充分地認識到依據2或5的倍數特征的思想已經行不通了,從而開始新的探索。在探索過程中借助“百數表”,讓學生獨立地圈出3的倍數,圈完后互相交流3的倍數的個位有什么特點,

  再次否定了之前的思維定式。由于個位上沒有特點,所以引導學生從其他的角度觀察,學生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發現,所以本節課中我關注到學生的思考困境,引導學生從斜著觀察的角度思考探索。當學生斜著觀察時能發現個位上的數字依次減1,十位上的數字依次加1,適時提出“什么是沒有變的?”問題一提出,學生恍然大悟,發現:個位和十位上的數的和沒有變!順其自然的知道了3的倍數具有這樣規律。經過研究每一斜行發現:個位和十位上的數的和不變,都是3的倍數。知道了這個規律后,下面開始延伸這個規律。

  一方面:驗證百數表內其他不是3的`倍數是否具有這個規律?另一方面:比100大的數,三位數、四位數、五位數等是否具有這個規律?通過兩方面的驗證,再次強調了這個規律是普遍存在的,而這時3的倍數特征已經歸結為:一個數各位上的數的和是3的倍數,這個數就是3的倍數。知道了3的倍數特征之后通過練習鞏固加強,練習的設計是三道題,這三道題設計為不同的層次,第一題是基礎題,第二題是拔高題,第三題是解決問題。通過做題發現學生本節課掌握得不錯。

  最后,對本節課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學生明白為什么2或5的倍數特征只看個位就可以了,而3的倍數特征需要看所有數位。從而達到學知識不但要知其然還要知其所以然。整個教學過程中,學生能在猜想、操作、驗證、交流、歸納的數學活動中獲得豐富的數學經驗,同時這也有利于學生創造力的培養。通過本節課的教學以及學生的掌握情況,

  最終檢測本節課的目標較好的達成。但反思這節課的不足,我覺得在每個環節上的過渡應該更加的自然。另外,在小組討論的時候應多關注學生的交流,對學生進行適時地指導。

  基于第一節課的優點和不足,進行了第二次的授課即錄課。由于學生們已經學習了過本節課,所以對于學生們來說已經是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節課我做了適當的調整。本節課我更多關注的是數學方法和思維方式的培養。其中體現在:

  1、學生在舉例驗證猜想的時候,讓學生體會反例的作用,如果有一個反例的存在,就說明猜想的結論是錯誤的。

  2、在探索3的倍數特征時,對于100以內3的倍數,應如何著手驗證,怎么選取數來驗證,這一環節讓學生體會:在研究規律的時候,優先選擇數比較多的這一組,讓學生明白如果有規律更容易探索和發現。

  3、在拓展規律的時候,采用舉了大量的數據,證明了規律的普遍存在,讓學生體會規律的適用范圍。

  4、在做練習的時候,第2小題,關注學生思考問題是否全面,關注學生的思考過程。

  5、練習的第3小題,一道解決問題的題目,通過讓學生讀題、審題、分析題之后,再思考。這一道題學生展示了多種的做題方法,體現了方法的多樣性,同時也說明學生的思維是活躍的。本節課中的不足,練習中第3題學生的做法沒有完全的在黑板上板書,

  另外,本節課中學生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學生還不夠。在今后的教學中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學水平,設計出學生更能接受和喜歡的課。

  《3的倍數的特征》的教學反思 篇3

  站在跳板上學習數學——3的倍數的特征教學反思

  《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展 。

  “3的倍數的特征”屬于數論的范疇,離學生的生活較遠,有一定的難度。而2.5的倍數的特征是學生學習這一課的基礎。所以,在教學“3的倍數的特征”時,我首先以學生原有認知為基礎,激發學生的探究欲望,利用學生剛學完“2.5的倍數的特征”產生的負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2.5的倍數的特征”遷移到“3的倍數的特征”的問題中,由此產生認知沖突,萌發疑問,激發強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。但針對這樣的環節,也有老師提出反對意見,他們認為教師在教學中不僅要注重知識的正遷移,還要防止負遷移的產生,要能正確地預見學生學習中可能出現的錯誤,采取適當措施,防患于未然,達到所謂“防微杜漸”的目的;他們滿足于學生的一路凱歌,陶醉于學生的盡善盡美,視學生的差錯為洪水猛獸。但是課堂就是學生出錯的地方,出錯是學生的權利,學生的錯誤是勞動的成果,關鍵是要看我們教師如何看待學生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學的巨大財富”。正式因為如此,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學生總會出現各種各樣的錯誤,我們的課堂教學不應該有意識地去避免學生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應變的機智,給學生一個出錯的.機會和權利。

  其次,看一個數是不是2.5的倍數,只需看這個數的個位。個位是0、2、4、6、8的數就是2的倍數,個位是0、5的數就是5的倍數。而3的倍數特征則不然,一個數是不是3的倍數,不能只看個位,而要看它所有所有數位上的數的和是不是3的倍數。在教學中,我和大多數的教師一樣,更多的是關注兩者的不同,注重讓學生對兩種特征進行區分,因此,教學中往往刻意對比強化,凸顯這種差異。但這樣的處理很明顯在數論的角度上割裂了兩者的共同點。實際上教師在引導學生發現3的倍數的獨特特征的同時,也應該注意引導學生歸納2、3、5倍數特征的共同點。別小看這寥寥數言的引導,實質它蘊藏著深意。因為從數論角度講一個數能否被2、3、5乃至被其它數整除,其研究的理論基礎是一樣的:即如果各個數位上的數被某數除,所得的余數的和能夠被某數整除,那么這個數也一定能被某數整除。當然,小學生由于知識和思維特點的限制,還不可能從數論的高度去建構與理解。但是,這并不意味著教師不可以作相應的滲透。事實上,正是由于有了教師看似無心實則有意的點撥:“其實3的倍數特征與2.5的倍數特征其實有一點還是很像的,不知同學們注意到沒有?”學生才可能從2、3、5倍數特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯系:2、3、5倍數特征可以看作是一樣的,都是看它是不是誰的倍數,只不過判斷一個數是不是2、5的倍數,只需看這個數的個位是不是2.5的倍數,而判斷一個數是不是3的倍數就要看它所有數位的和是不是3的倍數。

  《3的倍數的特征》的教學反思 篇4

  《3的倍數的特征》的教學是五年級數學上冊第三單元“因數與倍數”中一個重要知識點,是學生在學習了2和5的倍數特征之后的新內容。

  3的倍數的特征與2和5的倍數的特征有很大差別,2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我在本節課設計理念上,突出以學生為主體,教師為主導,方法為主線的.原則,從現象到本質,從質疑到解疑。當然本節課也存在很多問題,下面我進行做幾點反思。

  1、瞄準目標,把握關鍵

  在導入環節,我通過復習舊知識進行“熱身”。由于學生已經掌握了2和5倍數的特征,知道只要看一個數的個位就能判斷一個數是不是2或5的倍數,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學生發現卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的愿望,這樣有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2、經歷過程,授之以漁

  猜想3的倍數特征是基礎,在學生得出猜想后,我便引導學生找出百數表中3的倍數去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內即可發現3的倍數中,個位上可能是10個數字中的任何一個,之前的判斷已經站不住腳。之后繼續探究,在100以內,基本可以發現規律,但為了嚴謹,必須跳出百數表,在100以上的數中去驗證這個規律。最后,引導學生理解這個結論背后的原理,為什么它的規律和之前的規律不一樣?這樣一來,學生不僅學會本節課知識,更掌握了科學的探究方法。

  3、追求本真,知其所以然

  本節課的目標定位上,我考慮到學生的已有認知基礎,我決定引導學生探索3的倍數的特征背后的道理。這一嘗試建立在我對學生學情把握的基礎上,因為3的倍數的特征的結論一但得出,運用起來沒有難度,后面的練習往往成了“休閑時間”,而進一步提升探索難度,無疑是開發思維的良好契機。我運用數形結合的方法逐步深入,最后還是把話語權留給學生,這樣就給予不同學生各自適應的個性化學習方略,真正做到了讓每位同學在數學上都得到發展。

  《3的倍數的特征》的教學反思 篇5

  《3的倍數的特征》是人教版義務教材新課程第八冊的教學內容,對這節課的教學設計,有從2、5的倍數的特征中引入的、有讓學生通過擺火柴棒研究的,其中不乏好點子好設計。但是,大部分老師都要拋出一個問題讓學生思考:“火柴棒的總根數跟3的倍數有什么聯系?”或者干脆問“3的倍數和數位上的數字的和有什么關系?”總覺得教師對學生的引導過于直接,對于五年級的學生,經過這樣的提問,一般都能找到3的倍數的特征,也能用語言來表述。我認為,我們的關鍵不但要讓學生找到3的倍數的特征,更應該引導學生怎樣去發現數位上的數字的和與3的倍數之間的關系。我考慮,能不能在本節課中運用分類,讓學生自主探究呢?以下是兩個教學片段:

  教學片段一:

  讓學生用30秒時間,寫3的倍數,大部分學生都從小到大寫了25個左右

  老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務。

  師:請你給自己寫的3的倍數分類,看看能不能找到規律。限時2分鐘。

  (結束)學生回答。

  生1:3、6、9;12、15、18、21、24……按位數分類。(有3人和他一樣分)師:按位數分類,那么3位數里哪些是3的倍數呢:103、208是3的倍數

  嗎?(學生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

  (有32人和他一樣)

  師:你分類的標準是什么?

  生2:個位是0——9的都歸為一類,共兩類。

  生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。

  師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數,能迅速判斷嗎?(生無語)

  師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發現3的倍數的特征,是有價值的呢?(學生陷入沉思)

  以上學生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數的特征,卻沒有意義。大部分學生是從2、5的倍數的特征中受到啟示,這是學生的經驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學生,不要走彎路呢?我認為,負遷移也是一種寶貴的經驗,經歷過挫折,對知識的理解就會更加深刻,無需刻意回避。

  教學片段二:

  師:繼續觀察這些數,還有其它分類方法嗎?限時5分鐘。(陸續有學生舉手,5分鐘后,共有15位學生舉手,巡視一遍。)

  師:誰來介紹自己新的分類方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  師:你的分類標準是什么?

  生1:第一類,每個數數位上的數字的和是3;第二類,每個數數位上的數字的和是6;第三類,每個數數位上的數字的和是9;第四類,每個數數位上的數字的和是12;以此類推。

  師:誰來幫他“以此類推”?

  生2:每個數數位上的數字的和是15,也是3的倍數;每個數數位上的數字的和是18,也是3的倍數。

  生3:每個數數位上的數字的和是21,也是3的倍數;每個數數位上的數字的和是24,也是3的倍數。

  師:你能用一句話來表達嗎?

  生4:每個數位上的數字的和是3、6、9、12、15、18等,這個數就是3的倍數。

  生5:每個數位上的數字的和是3的倍數,這個數就是3的.倍數。

  師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(前5個)105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍數,105也是3的倍數。

  生5:1加1加1等于3,3是3的倍數,111也是3的倍數。

  ……

  (一個學生根據規律回答,其他學生用豎式驗證。)

  生6:3的倍數的特征是找到了,但這樣的分類太亂。我一共分3類:

  第一類:每個數數位上的數字的和是3:3、12、21、30;

  第二類:每個數數位上的數字的和是6:6、15、24、42、51;

  第三類:每個數數位上的數字的和是9:9、18、27、36、45……,

  這樣的數是3的倍數。

  師:那老師的這些數:339、504、918、1527、2442屬于哪一類呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數沒有超出這三類的。

  師:厲害!(讓其他學生說了兩個四位數,用他的方法來判斷是不是3的倍數,大概有三十個左右的學生能用這樣的方法分析。老師又舉了一個反例。)

  師:誰能用幾句話來概括?

  生6:一個數,每個數位上的數字的和是3、6、9,如果和大于9的,數位上的數再加,直到出現一位數,如果是3、6、9,那么這個數就是3的倍數。

  師:真佩服你們!

  第二天,有學生告訴我他發現了一種更快判斷3的倍數的方法,不用把數位上的數都加起來,比如538,3是3的倍數就不要管它了,只要5加8加一下,13不是3的倍數,538就不是3的倍數。我又說了一個五位數2076,學生分析,6是3的倍數,不去管它,2加7是9,9是3的倍數,整個數就是3的倍數。

  學生的探究能力如此之強,是我沒想到的,學生快速判斷3的倍數的方法,實際上已經綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學生新的探究的開始。

  從本節課中,我有幾點小小的感悟:

  一、教師不要害怕學生探究的失敗。學生第一次探究的失敗,完全是正常的,這是他們運用已有的經驗,進行探究后的結果。盡管這種經驗的遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學中比比皆是,我們不但不能回避,而且要好好利用,要讓學生積累對數學活動的經驗,同時能將“經驗材料組織化”。

  二、教師要給學生創造探究的機會。學生的探究能力其實是老師意想不到的。最后一位學生對3的倍數的概括(一個數,每個數位上的數字的和是3、6、9,如果和大于9的,數位上的數再加,直到出現一位數,如果是3、6、9,那么這個數就是3的倍數。),盡管實際的意義不是很大,但是它更具有橫向的關聯,2的倍數特征是:個位是0、2、4、6、8的數是2的倍數;5的倍數的特征是個位是0或5的數是5的倍數。或許,這種類比聯想更容易讓學生理解新的知識,更何況是學生自己探究出來的。其實很多教學內容我們都可以讓學生進行探究,關鍵是教師如何給學生提供一個探究的載體,一種探究的環境。

  三、教師對學過的知識要經常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經常把學生學過的知識,在新知中不知不覺地再應用,再鞏固。溫故而知新,在復習與鞏固中,學生會對舊知有更高的認識,更深的理解,也容易排除學生對新知的畏難思想。同時要經常地對各種知識進行串聯,編織學生知識的網絡,使學生認識到各種知識之間是相互關聯相互作用的,以利于學生解決一些實際問題或綜合性問題。

  四、教師要經常在教學中滲透一些數學思想。分類是一種數學思想,同時也是一種數學思維的工具。人教版小學數學第一冊學生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。

  對于分類的標準,分類的原則,學生在不知不覺中有了感悟。借助分類,有40%的學生找到了3的倍數的特征,學生完全是在觀察、嘗試、驗證的基礎上探究的,是自主的行為研究。在小學數學中,滲透了很多數學思想,如集合、對應、假設、比較、類比、轉化、分類、統計思想等,在教學中合理地運用這些數學思想,對學生學習數學的影響是深遠的,也會讓我們的數學探究活動更有意義,更有價值。

  《3的倍數的特征》的教學反思 篇6

  本節課探究3的倍數的特征之前,我還是先讓學生寫出50以內3的倍數,然后讓學生觀察這些數有何特征,大部分同學找不著規律,個別同學可能是受上節課的影響,說出了:個位上是0、1、2、3、4、5、6、7、8、9的.數就是3的倍數,但馬上就被其他同學推翻了。

  然后我就出示計數器,依次撥出3的倍數,讓學生觀察一共用了幾顆珠子,讓學生體會到有幾顆珠子就是各個數位上數的和,發現珠子的顆數正好是3的倍數,

  也就是各個數位上數的和是3的倍數,那么這個數就是3的倍數。說實話,學生對于這一規律,不是很容易接受,在后來的練習中,才慢慢體會到。

  “想想做做”的五道題設計得比較好,體現了分層,特別是最后一道,學生通過交流討論后,得出了先選數后組數的思路,練習的效果比較好。

  《3的倍數的特征》的教學反思 篇7

  今天我教學了3的倍數的特征,我首先復習2、5的倍數的特征,然后我出示了幾個不同的四位數,問生:誰能很快判斷出哪些是3的倍數?想知道有什么竅門嗎?這們引入課題很順當,學生也很有興趣。下面,我先讓學生寫出50以內3的倍數,再觀察:3的倍數有什么特點?學生一時很難發現,仍從個位上的數去觀察,但馬上被其他同學否定,當時我心里有點擔心怎么看不來呢?

  我啟發學生再看看個位和十位上的數,通過交流后,在部分學生馬上發現把每個數的數字加起來的和除以3都是正好除的,我讓學生用這個發現對書上第76頁的表格100以內的數進行驗證一下,學生驗證后我又讓學生從100以外的數來驗證。從而得出了3的倍數的特征。

  再通過用1、2、6可以寫成哪些三位數?這些三位數是3的'倍數嗎?由此有什么發現?讓學生進一步明白3的倍數跟數字的位置沒有關系,只跟各位上數的和有關系。

  這樣學生在完成想想做做第5題時學生思考時就不會漏寫了。最后,通過后面的練習,我覺得在教學某些知識時,最好老師不要輕易下結論,只有讓他們自己在反復實踐中自己得出結論,才能牢固地掌握知識。

  《3的倍數的特征》的教學反思 篇8

  《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,

  必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。

  1、找準知識沖突激發探索愿望。

  找準備知識中沖紛激發探索,在第一環節中我先讓學生復習2.5的倍數特征并對一些數據做出了判斷而后我們“誰來猜測一下3的倍數特征”激發學生探究的愿望。由于學生剛剛復習了2.5倍數的特征,知道只要看一個數的個位,因此在學習3的倍數特征時,

  自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的.認知結構中去,還有利于培養學生深入探究的意識和能力。

  2、激發學習中的困惑,讓探究走向深入。

  找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,而我從孩子們的學號為入重點,讓孩子們判斷自己的學號是否是3的倍數,并再次探究3的倍數特征,

  并且發現3的倍數和數字排列順序的有關系。但和這個數的個位上的數字有關。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗證,這種層層遞進環環相扣的方法,促使探究活動走向深入,讓學生獲得更大的發展。

  3、課后反思使之完美。

  這節課結束后,我感覺最大的缺憾之處,最后點選了的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習題方面,也應形式面多樣化,

  如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得可持續發展的動力。

  《3的倍數的特征》的教學反思 篇9

  《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展。

  新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養學生在實際的學習活動中,善于發現問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數的特征,有規律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規律判斷,但學生的能力沒能培養,智力得不到開發。本課的設計采用了啟發與發現相結合的教學方法,激勵學生大膽猜想,動手實踐,去發現規律,形成技能,升華至應用于生活。

  本課主要使學生在原有認知的基礎上產生認知沖突,進而產生新的探索欲望,突出了對學生“提出問題—探索問題—解決問題”的能力培養,學生能在猜想、操作、驗證、交流、反思、歸納的數學活動中,獲得較為豐富的數學經驗,也有助于創造性的培養。當然,培養學生的創造個性,僅僅停留在教學活動的情境上是不夠的,教師首先要具有創造精神,注重設計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發學生的創新欲望,學生的創造意識才能得以培養,個性才能充分發展。本課重點是要理解3的倍數特征,能夠準確判斷一個數是不是3的倍數。我采用的是復習導入,先和學生們一起回憶了一下。

  2、5的倍數特征,然后出示本課的教學目標。新授環節先讓學生猜測一下3的倍數會有哪些特征呢?接著采用數形結合的方法,學生動手操作,在1~100的數字卡里找一找3的倍數,然后用自己喜歡的`符號圈起來,然后觀察小組討論匯報。發現3的倍數特征不像。

  2、5的倍數特征一樣,看一個數的末尾了,引導學生是不是要看這個數其它的數位上的數呢?學生發現也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數特征是一個數各個數位上數字相加的和。找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,剛開始我們先采用課本上百數表來研究,結果在一個班實踐后認為效果并不是很理想,由于數太多,讓學生觀察3的倍數的這些數時,并從中找出相同的地方,結果,很多同學找了與本節課毫無關系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數代表百數表,于是我設計了一個表格,讓學生用除法計算的方法找到3的倍數的特征,并觀察這些數,這些數的個位分別從0到9都有,讓學生知道3的倍數的特征跟數的個位沒有關系,然后從中又把像45和54,75和57,123和321等特殊的數單獨展示出來,讓學生觀察從中找出規律。結果我又重新上了這節課,效果比上節課要好。

  這節課結束后,我感覺最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。

  《3的倍數的特征》的教學反思 篇10

  3的倍數是在學習了2、5的倍數特征的基礎上進行學習的,我讓孩子們提前進行了預習,通過授課發現孩子們的預習沒有達到預想的效果。學生在匯報時能夠圈出3的倍數,而且非常準確,在匯報3的倍數的方法時,他們大多數是借助結論得出來的,沒有體現出他們研究的過程。因此,我在課上進行了及時的指導,把孩子們需要匯報的過程進行了詳細的說明。孩子們很快理解了我的意思,立刻進行了新的分工。第一位同學匯報了他們找到的3的倍數,并介紹的找3的倍數的方法即,用這個數除以3,看商是不是整數而且沒有余數。接下來匯報百數表中前十個3的倍數,讓大家觀察個位上的數字,通過觀察發現3的倍數個位上是0-9的任意一個數,不能像2、5的倍數特征只看個位的特殊數就行了。因此只看個位不能確定是不是3的倍數。

  由于孩子們有了提前的預習,孩子們心目中已經有了結論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進行了滲透,讓學生駐足片刻,把握課堂的結構。

  第三個環節,孩子們發現斜著看每個數的各位逐漸加一,十位逐漸減一,因此個位上的數字和十位上的數字之和不變,而且都是3的倍數。讓孩子試著總結結論:兩位數個位上和十位上的數字之和是3的'倍數,那么這個數也是3的倍數。

  第四個環節,其實并不是把3的倍數特征總結出來了就完成任務了。這個結論只是通過觀察百數表得出的關于兩位數的結論,兩位數滿足這個特征,是不是所有的數都適用呢?于是讓孩子試著寫一個三位數、四位數而且是3的倍數,然后用這個結論進行驗證,看是否符合。孩子們先試著寫幾個3的倍數,老師羅列到黑板上,然后分別用用各個數位之和相加的方法和除以3是否有余數的方法進行驗證。驗證的結果是肯定的,因此得出的結論適合所有的數。

  到這里孩子們對于3的倍數特征已經理解的很透徹了,做起練習來也顯得得心應手。孩子體驗了結論得出的過程,每一個環節的設計都有他的意圖,在每個環節孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數學課。

  《3的倍數的特征》的教學反思 篇11

  3的倍數的特征比較隱蔽,學生一般想不到從“各位上數的和”去研究,本課注重引導學生經歷探索的過程。上課開始先讓學生回顧舊知,2的倍數和5的倍數有什么特征,學生們發現都只要看一個數個位上的數就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數有什么特征呢?猜測是一種常用的數學思考方法,讓學生猜測3的倍數有什么特征,能較好地調動學生的學習積極性。由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數一定是3的倍數”,還有學生猜測:“各位上的數字加起來是3,6,9一定是3的倍數”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。

  下面進入驗證環節,先學生判斷自己的學號是不是3的倍數,再在這些學號中挑出個位上是0,3,6,9的數,通過交流這些數不一定都是3的倍數。學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢。于是進入到動手操作環節,在此基礎上,利用計數器轉移探索的方向,讓學生用3顆算珠在計數器上任意擺數,得出結果:擺出的數都是3的倍數,到這里有幾個學生顯得很興奮。隨后用5顆算珠實驗,發現擺出的數都不是3的倍數,到這里學生中已經有一些議論,他們都有了發現。為了讓更多的學生看出其中的神奇,我將自主權交給了學生們,自己選擇算珠的顆數進行了第三次實驗,然后板書出每組的實驗結果,從結果的數據中,學生們都很興奮地發現了所用算珠的`顆數是3顆,6顆,9顆,撥出的數都是3的倍數,每個數所用算珠的顆數,也是每個數各位上數的和。把算珠顆數抽象成各位上數的和,是理解3的倍數特征的關鍵。

  “試一試”是教學的第三步,如果一個數不是3的倍數,那么這個數各位數的和不是3的倍數。利用反例進一步證實3的倍數的特征,體現了數學的嚴謹性和數學結論的確定性。可惜在這一點上,我很倉促地指著黑板上算珠顆數是4顆,5顆,7顆,8顆時,所擺出的數都不是3的倍數,直接告訴了學生,而沒有讓學生自己舉出反例。隨后設計了一系列習題,使學生得到鞏固提高。

  整節課只能說順利地走了下來,對于教者我來說從中發現了自己教學上的不足之處,在今后的教學中,我將不斷學習,及時總結,虛心請教,以進一步提高自己的教學業務水平。

  《3的倍數的特征》的教學反思 篇12

  【初次實踐】

  課始,讓學生任意報數,師生比賽誰先判斷出這個數是不是3的倍數,正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想。“老師,我知道其中的秘密,只要把各個數位上的數加起來,看看是不是3的倍數就行了!”“對!在數學書上就有這句話。”……又有幾個學生偷偷地打開了數學書。“怎么辦?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調整了預設,變“探索”為“驗證”,將結論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數表中3的倍數圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……

  [反思]

  課堂上經常會出現類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發現”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執行操作命令的“計算器”,又能獲得哪些有益的發展?如果經常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經驗,而且在已經揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發現,體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發學生探究的熱情,促使學生進行深入探究呢?

  【再次實踐】

  (與第一次教學情況基本相同,有些學生能夠正確地判斷一個數是不是3的倍數,這時一些學生卻依然感到困惑,我設法將這一困惑激發出來。)

  師:同學們真能干,這么快就知道了3的倍數的特征,上節課我們學習了2、5的倍數的特征只和什么有關?

  生:只和一個數的個位有關。

  師:與今天學習的知識比較一下,你有什么疑問嗎?

  生1:為什么判斷一個數是不是3的倍數只看個位不行?

  生2:為什么判斷一個數是不是2、5的倍數只看個位,而判斷是不是3的倍數要看各位上數的和?

  ……

  師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數為什么只和它的個位有關。

  (學生嘗試探索,教師適時引導學生從簡單數開始研究,借助小棒或其他方法進行解釋。)

  生1:我在擺小棒時發現,十位上擺幾就是幾十,它肯定是2、5的倍數,因此只要看個位擺幾就可以了。

  生2:其實不用擺小棒也可以,我們組發現每個數都可以拆成一個整十數加個位數,整十數當然都是2、5的倍數,所以這個數的個位是幾就決定了它是否是2、5的倍數。

  師:同學們想到用“拆數”的方法來研究,是個好辦法。

  生3:是否是3的倍數只看個位就不行了。比如13,雖然個位上是3的倍數,但10卻不是3的倍數;12雖然個位不是3的倍數,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數和個位上的數合起來是不是3的倍數就行了。

  生4:我也是這樣想的,我還發現十位上余下的數正好和十位上的數字一樣。

  生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數和十位上的數不一樣了,比如40除以3只余1,余下的數就和十位數字不同。

  生(部分):對。

  生4:其實40不要拆成39和1,你拆成36和4,余下的數不就和十位數字相同了嗎?

  生6:也就是說整十數都可以拆成十位上的數字和一個3的倍數的數。這樣只要看十位上的數和個位上的和是不是3的倍數就可以了。

  師:同學們確實很厲害!那三位數、四位數是不是也有這樣的規律呢?

  學生用“拆數”的方法繼續研究三、四位數,發現和兩位數一樣,只不過千位、百位上余下的數要依次加到下一位上進行研究。3的倍數的特征在學生頭腦中越來越清晰。

  師:同學們通過自己的探索,你們不僅發現了3的倍數的特征,還弄清了為什么有這樣的特征。現在你還有哪些新的探索想法呢?

  生1:我想知道4的倍數有什么特征?

  生2:我知道,應該只要看末兩位就行了,因為整百、整千數一定都是4的倍數。

  師:你能把學到的方法及時應用,非常棒!

  生3:7或9的倍數有什么特征呢?

  ……

  師:同學們又提出了一些新的、非常有價值的問題,課后可以繼續進行探索。

  [反思]

  1. 找準知識間的沖突,激發探究的愿望。學生剛剛學習了2、5的倍數的特征,知道只要看一個數的個位,因此在學習3的倍數的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數的特征,卻要把各個位上的數加起來研究。于是新舊知識之間的矛盾沖突使學生產生了困惑,“為什么2或5的倍數只看個位?”“為什么3的倍數要把各個位上的'數加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2. 激活學習中的困惑,讓探究走向深入。創造和發現往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發出來,通過學生間相互啟發、相互質疑,對問題的思考漸漸完整而清晰。學生不但經歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發現,探究能力也得到切實提高。學生在學習中難免會產生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當的方法將其激活,促使探究活動走向深入,讓學生獲得更大的發展。當然,學生在學習中可能產生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。

  3. 溝通知識間的聯系,讓學生不斷探究。顯然,2、5的倍數的特征與3的倍數的特征是相互聯系的,其研究方法是相通的(都可以通過“拆數”進行觀察),特征的本質也是相同的。這種研究方法和特征本質的及時溝通,激發了學生繼續研究4、7、9……的倍數的特征的好奇心,促使學生不斷探究,將學習由課內延伸到課外,并在探究過程中建構起對數的倍數特征的整體認識,感悟數學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續發展的動力。

  《3的倍數的特征》的教學反思 篇13

  心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創設良好的課堂氣氛。

  教學3的倍數特征這一課時,教師組織學生進行下列鞏固練習:

  下列數中3的倍數有:()

  1435451003328767488

  學生利用3的倍數的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數的數最多,我們看誰能考倒老師。”這時同學們興趣盎然,紛紛出題來考老師。

  生:42

  師:111

  生:78

  師:57

  生:81

  師:2037

  生:6891

  …………

  這時師故意出錯:369041

  學生馬上發現了這個數不是3的倍數,師問:“你能不能改一改其中的某個數字使它成為3的倍數。”

  生:“可以將1改為2。”

  生:“可以將4改為5。”

  生:“可以將1改為5。”

  生:“可以將1改為8。”

  生:“可以將4改為2”

  生:“可以將4改為8”

  學生回答完后,我及時提問:“你們為什么不改其中的3、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數都是3的倍數,所以只要改4和1這兩個數就行了。”這時我及時指出:“判斷一個數是不是3的倍數可以用篩選法來判斷,在各數位的數字中先篩去3的倍數或和為3的'倍數的數字,若余下的數字之和是3的倍數,原數就是3的倍數,否則就不是。”這時我逐漸地出示下列這組數要求學生馬上判斷是否3的倍數。

  56

  561

  5617

  56178

  561784

  5617849

  …………

  這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。

  《3的倍數的特征》的教學反思 篇14

  2、5、3的倍數特征是分為兩節課完成的,上完后,給我最大的感受,學生對2、5的倍數的特征不難理解,對偶數和奇數的概念也容易掌握,2、5的倍數的特征這節課,概念比較多,學生很容易混淆。怎樣才能把抽象的概念轉化為形象直觀的知識讓學生們接受呢?

  一、互動、質疑,激發學生的探究興趣。

  好的開始等于成功了一半。課伊始,我便說:“老師不用計算,就能很快判斷一個數是不是2或5的倍數,你們相信嗎?”學生自然不相信,爭先恐后地來考老師,結果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實,是老師知道一個秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調動了學生學習的積極性,激發了其探究的欲望。

  二、鼓勵學生獨立思考,經歷猜測驗證的過程。

  數學學習過程中充滿了觀察、實驗、推斷等探索性與挑戰性活動。由于5的倍數的特征比較容易發現,我便把它調到2的倍數的特征前面來進行教學。首先讓學生獨立寫出100以內5的倍數,獨立觀察,看看你有什么發現?學生很容易發現“個位上是0或5的數是5的倍數。”而這只是猜測,結論還需要進一步的驗證。我們不能滿足于學生能夠得到結論就夠了,而應該抱著科學嚴謹的態度,引導學生認識到這個結論僅僅適用于1—100這個小范圍。是不是在所有不等于0的自然數中都適用呢?還需要研究。在老師的引導下,學生開始認識到還要繼續拓展范圍,研究大于100的自然數中所有5的倍數是不是也是個位上的數字是5或0。在這一過程中,學生感受到了科學嚴謹的態度,知道了在進行一項數目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴范圍大,最后得出科學的結論。這樣,當下節課研究3的倍數的.特征時,學生就會大膽猜想,并有方法來驗證自己的猜想了。

  三、小組合作,發揮團體的作用

  動手實踐、合作交流是學生學習數學的重要方式。與5的倍數特征相比較,2的倍數特征稍顯困難,所以我組織學生利用小組合作的方式,根據探究5的倍數的特征的思路,小組合作探究2的倍數的特征。經過這樣的合作討論,大多數小組能夠得到正確或接近正確的答案。突出了學生的主體地位,讓他們在充分的探索活動中充分發現規律、舉例驗證、總結歸納。

  《3的倍數的特征》的教學反思 篇15

  3的倍數的特征比較隱蔽,學生一般想不到從“個位上的數字之和”去研究。上課開始先讓學生通過練習回顧舊知:2的倍數與5的倍數的特征。然后讓學生猜想:3的倍數又有什么特征呢?這樣能較好調動學生學習的積極性。由于受2的倍數與5的倍數特征的影響,有些學生很自然猜測到“個位上是0,3,6,9的數是3的倍數”、“各位上的數字加起來是3,6,9的數是3的倍數”等等,學生能想到這幾點是非常不錯的。

  學生進行猜想后,我并沒有判斷學生的猜想是否正確,而是出現了百數表,讓學生在百數表中圈出所有的3的倍數,讓學生從表中發現3 的倍數的特征,把自己發現的在小組間交流。此時,我還是沒有判斷學生的發現是否正確,而是讓學生打開課本自學,從課本中找3的倍數的特征,當遇到問題解決不了時,我們可以向課本求助。然后問學生“各位上的數字的和是3的倍數是什么意思?請結合舉例說說。”接下來將數擴到百以上,通過各種方式舉正反例通過計算來驗證從而得出3的倍數的特征。最后比較驗證之前的猜想與發現。當我們向課本找到結論時,我們也要質疑,通過舉例來驗證。鼓勵學生對知識要敢于質疑,敢于通過各種方式去驗證,培養學生良好的數學思維。

  在教學中,我能有效獲取課堂生成資源,同時也注重方法的指導。比如:同桌舉例驗證時,涉及到了“123456”是否是3的倍數,先給予學生思考的時間,讓后問:還有更加簡便的方法嗎?老師有效引導,讓學生去發現“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數等。有較好的教學機智與課堂駕馭能力,如:在百數表圈3的.倍數時,我的課件中有個數“99”忘記沒有圈好,學生發現了這問題。在這里,我是表揚了發現此問題的學生,老師故意說:我是特意沒有圈的,看我們的學生觀察是否仔細,考慮問題是否全面……,把原本的錯誤變成良好的教學資源。練習的設計業很有層次與梯度,聯系生活實際。

  本節課也有很多不足的地方:百數表中的數據太多,部分學生的發現是亂七八糟的;在舉例驗證的過程中,學生的計算還不夠,學生親自從算中去體會更好;總結不太及時,從及時總結中提煉、提升會更好。

  《3的倍數的特征》的教學反思 篇16

  《3 的倍數的特征》本節課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養學生發現問題,解決問題的能力,讓學生經歷科學探索的過程,感受數學的嚴謹性和數學結論的正確性。我是從教學環節維度進行觀課的,本節課有五個環節包括:一、復習舊知,直接導入。二、自主探究,合作驗證。三、總結提升,共同驗證。四、運用結論,鞏固訓練。五、全課小結,課后延伸。每個環節環環相扣,設計合理。下面就說一下自己的想法。

  一、以舊帶新,引入新課。

  趙老師先復習了2、5的倍數的特征,為這節課的學習打下了基礎。趙老師以學生原有認知為基礎,激發學生的探究欲望,利用學生剛學完“2、5的倍數的特征”遷移到“3的倍數的特征”的問題中,由此萌發疑問,激發強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。

  二、親身經歷,探索規律。

  本節課教師努力嘗試構建數學生態課堂,讓學生繼續利用小棒擺一擺,進而發現不止是3根、6根小棒能擺出3的倍數,9根也能“只要小棒的根數是3的倍數,擺出來的數就是3的倍數。”教師將“動手擺小棒”升級為“腦中撥計數器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學生的探索發現離“3的倍數的特征”只有咫尺之遙。整節課讓學生經歷“動手操作——觀察發現——舉例驗證——歸納總結”的探究過程,實現課程、師生、知識等多層次的互動。

  三、精心選題,鞏固新知。

  習題的設計力爭在突出重點,突破難點,遵循學生認知規律的基礎上,體現基礎性、層次性、靈活性、生活性、趣味性。本節課教師設計了3道練習題。在鞏固練習部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數學與生活的聯系。把數學和生活有機聯系起來,使學生體會到數學在現實生活中作用和價值,初步學會用數學的`眼光去觀察事物、思考問題,樹立學好數學、用好數學的志趣。

  四、回顧梳理,舉一反。

  在學生學習的過程中注意“學習方法”的指導,讓學生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環節設計了讓學生靜靜的回顧這節課的學習歷程“動手操作——觀察發現——舉例驗證——歸納總結”,使其在數學思想上做進一步的提升。

  《3的倍數的特征》的教學反思 篇17

  在執教《2、5、3的倍數的特征》后,我針對本節課的教學情況進行反思。

  一、跨年級學習新數學知識,知識銜接不上,不符合學生的認知規律。

  雖然2、5、3的倍數的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內容讓學生學懂,首先存在知識銜接問題,整除、倍數、因數這些概念學生都從未接觸過,因此,我在課開始安排了整除、倍數、因數新概念的介紹,在我看來,這些概念比較抽象,學生一時難以掌握。

  二、為了體現“容量大”,教學延堂。

  備課時也參考了不少資料,大多數教學設計都是將這一內容分成兩節課來學習,一節學《2、5的倍數的特征》,一節學《3的倍數的特征》,我確定用一節課教學《2、5、3的倍數的特征》,其目的是為了體現容量大,我的設計內容多,相應的`學生自學、展示、鞏固練習的時間和機會就壓縮的比較少了。而3的倍數的特征與2、5的又完全不同,學生接受起來可能會有一定的難度,最好單獨作為一課時學習。最后的環節達標測試拖堂了。

  三、學生合作學習的效果較好,但展示未體現立體式。

  高效課堂要充分發揮學生的主體作用,要體現學生會學,學會,在本節課上,學生合作學習的熱情高,通過展示,發現學生學懂了,總結出了2、5、3的倍數的特征,在展示環節,學生講的、板書的相互干擾,于是,我臨時安排按先后順序進行,沒體現出高效課堂的“立體式”這一特點。

  《3的倍數的特征》的教學反思 篇18

  《3的倍數的特征》的教學是五下數學第二單元“因數與倍數”中一個知識點,是在學生已認識倍數和因數、2和5倍數的特征的基礎上進行教學的。由于2、5的倍數的特征從數的表面的特點就可以很容易看出——根據個位數的特點就可以判斷出來。但是3的倍數的特征卻不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。因而在《3的倍數的特征》的開始階段我復習了2、5的倍數的特征之后就讓學生猜一猜什么樣的數是3的倍數,學生自然而然地會將“2。5的倍數的特征”遷移到“3的倍數特征的問題中, 得出:個位上是3、6、9的數是3的倍數,后被學生補充到“個位上是0—9的任何一個數字都有可能是3的倍數,”其特征不明顯,也就是說3的倍數和一個數的個位數沒有關系,因此要從另外的角度來觀察和思考。

  在問題情境中讓學生產生認知沖突,萌發疑問,激發強烈的探究欲望。接著提供給每位學生一張百數表,讓他們圈出所有3的`倍數,拋出問題:把 3 的倍數的各位上的數相加,看看你有什么發現,引導學生換角度思考3的倍數特征 。學生在經歷了猜測、分析、判斷、驗證、概括、等一系列的數學活動后感悟和理解了3的倍數的特征,引導學生真正發現:3的倍數各位上數的和一定是3的倍數;不是3的倍數各位上數的和一定不是3的倍數。從而,使學生明確3的倍數的特征,然后進行練習與拓展。這樣的探究學習比我們老師直接教給他們答案要扎實許多,之后的知識應用學生就相應比較靈活和自如,效果較好。

  這節課結束后,我感覺最大的缺憾之處在最后的拓展練習上,由于自己事先練習下水沒有做足,所以誤導了學生。題目如下:“從3、0、4、5這四個數中,選出兩個數字組成一個兩位數,分別滿足以下條件:1、是3的倍數。2、同時是2和3的倍數。3、同時是3和5的倍數。4、同時是2、3和5的倍數。”學生問要寫幾個時,我回答如果數量很多至少寫3個。呵呵,其實此題不需要如此考慮,因為它們的數量都有限。

  希望以后自己的教學會更扎實起來。

  《3的倍數的特征》的教學反思 篇19

  2、3、5倍數的特征我設計的是一節課,但上完這節課上完后,給我最大的感受,學生對2、5的倍數的特征不難理解,對偶數和奇數的概念也容易掌握,但我由于對教材的把握不夠,時間用到2、5倍數上的較多。以至于對3的倍數特征探究不到位。

  好的'開始等于成功了一半。課伊始,我設計了搶“30”的游戲,目的是讓學生從中找到3的倍數,但我發現這個游戲沒讓學生部明白要求沒有能提高學生的興趣。意義不到。數學學習過程中應該是觀察、發現、驗證、結論等探索性與挑戰性活動。首先讓學生獨圈出寫出100以內2、5的倍數,獨立觀察,看看你有什么發現?學生很容易發現他們的特征,而這只是猜測,結論還需要進一步的驗證。但我對這部分的處理太過于復雜零碎。以至于用的時間過多。比如說2、5倍數與其他數位的關系,著就不是本節課的重點。

  小組合作,發揮團體的作用,動手實踐、合作交流是學生學習數學的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學生的之一能力傾聽能等等還需進一步訓練。

  《3的倍數的特征》的教學反思 篇20

  五年級下冊《3的倍數的特征》教學反思《3的倍數的特征》的教學是五下數學第二單元因數與倍數中一個知識點,是在學生已認識倍數和因數、2和5倍數的特征的基礎上進行教學的。由于2、5的倍數的特征從數的表面的特點就可以很容易看出根據個位數的特點就可以判斷出來。但是3的倍數的特征卻不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。

  因而在《3的倍數的特征》的開始階段我復習了2、5的倍數的特征之后就讓學生猜一猜什么樣的數是3的倍數,學生自然而然地會將2.5的倍數的特征遷移到3的倍數特征的問題中, 得出:個位上是3、6、9的數是3的倍數,后被學生補充到個位上是0-9的任何一個數字都有可能是3的倍數,其特征不明顯,也就是說3的倍數和一個數的個位數沒有關系,因此要從另外的角度來觀察和思考。

  在問題情境中讓學生產生認知沖突,萌發疑問,激發強烈的探究欲望。接著提供給每位學生一張百數表,讓他們圈出所有3的倍數,拋出問題:把 3 的倍數的各位上的數相加,看看你有什么發現,引導學生換角度思考3的倍數特征 。學生在經歷了猜測、分析、判斷、驗證、概括、等一系列的數學活動后感悟和理解了3的倍數的特征,引導學生真正發現:3的倍數各位上數的和一定是3的倍數;不是3的倍數各位上數的和一定不是3的倍數。從而,使學生明確3的'倍數的特征,然后進行練習與拓展。這樣的探究學習比我們老師直接教給他們答案要扎實許多,之后的知識應用學生就相應比較靈活和自如,效果較好。

  這節課結束后,我感覺最大的缺憾之處在最后的拓展練習上,由于自己事先練習下水沒有做足,所以誤導了學生。題目如下:從3、0、4、5這四個數中,選出兩個數字組成一個兩位數,分別滿足以下條件:

  1、是3的倍數。

  2、同時是2和3的倍數。

  3、同時是3和5的倍數。

  4、同時是2、3和5的倍數。學生問要寫幾個時,我回答如果數量很多至少寫3個。呵呵,其實此題不需要如此考慮,因為它們的數量都有限。

  希望以后自己的教學會更扎實起來。

  《3的倍數的特征》的教學反思 篇21

  “能被3整除數的數”一課,能體現新的教育理念、教育思想。仔細分析,有以下幾個特點:

  1、確立了基本技能目標和發展性目標并重的教學目標。

  本節課不僅重視學生掌握能被3整除數的特征,并能運用特征進行正確判斷,同時十分重視學生學習過程的體驗和方法的滲透,讓學生通過“猜測——驗證——提出新的假設——驗證”的探索過程來發現知識,獲得結論,并感悟方法。

  2、理性處理教材,使教學內容生活化。

  教科書只是提供了學生學習活動的基本線索。教學中,教師要充分發揮主觀能動性,創造性的使用教科書,本節課重新設計例題,通過用“0——9”十個數字組成能被整除的三位數讓學生探索特征,這樣處理使教學內容有較強的靈活性,促進了學生思維的發展。教學內容生活化不僅能激發學生興趣,產生親切感,而且使學生認識到現實生活中蘊藏著豐富的數學問題。開課時收集的數據一方面激發了學生學習的興趣,同時也縮短了教師和學生的距離,課后“你再長幾歲,這個歲數就能被3整除”這一開放題富有情趣,給學生留下了深刻的印象。

  3、著力改變學生的學習方式。

  學習方式的轉變是本節課的主要特色。本節課始終以自主探索、合作交流為主要的學習方式,讓學生通過自主選教學內容,舉例驗證等獨立思考和小組討論等合作探究活動,獲得教學知識、感悟方法。如在課的第二階段,設計三個層次的教學活動,讓學生充分探索、討論、交流,使學生真正成為學習的'主人。第一層通過學生猜測、舉例、選數字組數,使學生產生兩次認知沖突;第二層通過交換三位數數字的位置,仍然沒能發現特征,產生第三次認知沖突;第三層次通過計算各位上的數的“和、差、積、商”使結論逐漸顯露。這一過程不僅培養了學生探究精神,磨練了意志,同時也使學生品嘗了成功的喜悅。

  4、合理定位教師角色,營造民主、和諧的學習氛圍。

  課堂教學中只有擺正了師生關系,才可能使學生得到發展。本節課學生始終是數學學習的主人,教師是數學學習的組織者、引導者和合作者。可以從以下兩方面看出:一是從師生活動的時間分配上,二是從分層探究、有針對性的適當引導上。這節課從開始到結束,氣氛始終處在民主、和諧之中,生活化的學習材料、平等的師生關系和開放的探究方式。

【《3的倍數的特征》的教學反思】相關文章:

3的倍數的特征教學反思06-10

《3的倍數的特征》教學反思04-11

3的倍數特征教學反思04-07

《3的倍數特征》教學反思07-20

《3的倍數的特征》教學反思02-11

3的倍數的特征的教學反思02-18

3的倍數的特征教學反思03-28

《3的倍數特征》教學反思04-11

3的倍數特征反思03-09

3的倍數的特征教學反思(精選17篇)08-19