- 相關推薦
五年級《約數和倍數的意義》教案
作為一位杰出的老師,通常會被要求編寫教案,教案是教學活動的依據,有著重要的地位。教案應該怎么寫呢?以下是小編收集整理的五年級《約數和倍數的意義》教案,歡迎閱讀,希望大家能夠喜歡。
五年級《約數和倍數的意義》教案1
教學要求
①使學生進一步理解整除的意義。
②使學生掌握整除、約數與倍數的概念,以及它們之間的相互依存關系,滲透辨證唯物主義思想。
③培養學生抽象概括與觀察思考的能力。
教學重點
約數和倍數的意義
教學難點
理解除盡和整除,約數和倍數等概念間的聯系和區別。
教學過程
一、創設情境
1、計算下面三組題。
(1)23÷7=(2)6÷5=(3)15÷3=
11÷3=1.8÷3=24÷2=
2、觀察并回答。
(1)上面哪個算式中的第一個數能被第二個數整除?
(2)在什么情況下,才可以說“一個數能被另一個數整除”?
(3)如果用整數a表示被除數,整數b(b≠0)表示除數,可以怎樣說?(讓學生看教材第49頁關于“整除”的一段話)
3、思考:我們在說一個數能被另一個數整除時,必須具備哪幾個條件?
明確三點①被除數、除數都是整數,除數不等于0,②商必須是整數缺一不可,③商的后面沒有余數
4、除盡與整除的區別與聯系。
(1)像6÷5=1.21.8÷3=0.6我們只能說第一個數能被第二個數。
(2)除盡被除數和除數(不等于0),不一定是整數,商是有限小數,沒有余數。
整除被除數和除數(不為0)都是整數,商是整數,沒有余數。(三整無余)
師:一個數能被另一個數整除表示的是兩個整數之間的一種關系,它們還有另一種關系,這就是我們今天要學習的約數和倍數關系(板書課題:約數和倍數的意義)
二、探索研究
1.小組學習約數和倍數的意義。
(1)讓學生看教材第50頁有關約數和倍數的一段話。
(2)小組討論:兩個數在什么情況下才有約數和倍數關系?“約數和倍數是相互依存的”是什么意思?
(3)在復習的'第1題中,請你指出哪個數是哪個數的倍數,哪個數是哪個數的約數?為什么?
(4)倍與倍數意義一樣嗎?
如:15是3的倍數,表示15能被3整除。
1.5是0.3的5倍,5倍表示1.5除以0.3的商。
(5)注意事項。讓學生看教材第50頁的注意。
三、課堂實踐
1.做教材第51頁的“做一做”。
2.做練習十一的第1題。
3.做練習十一的第2題。
4.做練習十一的第3題。
5.做練習十一的第4題。
60的約數有。
6的倍數有。
四、課堂小結
學生小結今天學習的內容。
課后反思:
給學生以豐富的材料,讓他們在感性認識的基礎上,通過主動的探索學習掌握概念。
五年級《約數和倍數的意義》教案2
教學目標
1、掌握整除、約數、倍數的概念.
2、知道約數和倍數以整除為前提及約數和倍數相互依存的關系.
教學重點
1、建立整除、約數、倍數的概念.
2、理解約數、倍數相互依存的關系.
3、應用概念正確作出判斷.
教學難點
理解約數、倍數相互依存的關系.
教學步驟
一、鋪墊孕伏(課件演示:數的整除下載)
1、口算
6÷515÷323÷7
1.2÷0.324÷231÷3
2、觀察算式和結果并將算式分類.
除盡
除不盡
6÷5=1.215÷3=15
1.2÷0.3=424÷2=12
23÷7=3......2
31÷3=10......1
3、引導學生回憶:研究整數除法時,一個數除以另一個不為零的數,商是整數而沒有余數,我們就說第一個數能被第二個數整除.
4、尋找具有整除關系的算式.
板書:15÷3=515能被3整除
5、分類除盡
除不盡
不能整除
整除
6÷5=1.2
1.2÷0.3=4
15÷3=15
24÷2=12
23÷7=3......2
31÷3=10......1
二、探究新知
(一)進一步理解”整除“的意義.
1、整除所需的條件.
(1)分析:24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余數)
6不能被5整除;(商是小數)
1.2不能被0.3整除;(被除數和除數都是小數)
(2)引導學生明確:第一個數能被第二個數整除必須滿足三個條件:
a、被除數和除數(0除外)都是整數;
b、商是整數;
c、商后沒有余數.
板書:整數整數整數(沒有余數)
15÷3=5
2、用字母表示相除的兩個數,理解整除的意義.
(1)討論:如果用字母a和b表示兩個數相除,那么必須滿足幾個條件才能說a能被b整除?
(板書:a÷b)
學生明確:a和b都是整數,除得的商正好是整數而沒有余數,我們就說a能被b整除.
(板書:a能被b整除)
(2)繼續討論:在什么情況下才能說a能被b整除?(板書:b≠0)
學生明確:整數a除以整數b(b≠0),除得的商是整數而沒有余數,我們就說a能被b整除(也可以說b能整除a).
3、反饋練習.
(1)下面的數,哪一組的第一個數能被第二個數整除?
29和336和121.2和0.4
(2)判斷下面的說法是否正確,并說明理由.
a.36能被12整除.()
b.19能被3整除.()
c.3.2能被0.4整除.()
d.0能被5整除.()
e.29能整除29.()
4、”整除“與”除盡“的聯系和區別.
討論:綜合以上所學知識討論,”整除“和”除盡“有什么聯系?又有什么區別?
(舉例說明)
(二)約數、倍數的意義
1、類推約數、倍數的意義.
(1)教師講解:15能被3整除,我們就說15是3的倍數,3是15的約數.
(2)學生口述:
24能被2整除,我們就說,24是2的倍數,2是24的約數.
10能被5整除,我們就說,10是5的倍數,5是10的約數.
a能被b整除,我們就說a是b的倍數,b是a的約數.
(3)討論:如果用字母a和b表示兩個整數,在什么情況下才可以說a是b的倍數,b是a的約數?(在數a能被數b整除的條件下)
(4)小結:如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數).
2、進一步理解約數、倍數的意義.
(1)整除是約數、倍數的前提.學生明確:約數和倍數必須以整除為前提,不能整除的兩個數就沒有的數和倍數的關系.
(2)約數和倍數相互依存的關系.
學生明確:約數和倍數是一對相互依存的.概念,不能單獨存在.
(3)反饋練習:
A、下面各組數中,有約數和倍數關系的有哪些?
16和2140和20xx和15
33和64和2472和8
B、判斷下面說法是否正確.
a、8是2的倍數,2是8的約數.()
b、6是倍數,3是約數.()
c、30是5的倍數.()
d、4是歷的約數.()
e、5是約數.()
3、教師說明:以后在研究約數和倍數時,我們所說的數一般不包括零.
4、教學例2:12的約數有哪幾個?
(1)引導學生合作學習,討論分析.
(2)匯報、板書:
12的約數有:1、2、3、4、6、12
(3)練習:15的約數有哪幾個?
(4)學生明確:
一個數的約數是有限的其中最小的約數是1,的約數是它本身.
5、教學例3:2的倍數有哪些?
(1)引導學生合作學習,討論、分析.
(2)匯報、板書:
2的倍數有:2、4、6、8、10......
(3)練習:2的倍數有哪些?
(4)學生明確:
一個數的倍數的個數是無限的,其中最小的倍數是它本身.
三、全課小結
這節課,我們在進一步研究整除的基礎上又學到了什么?通過學習你知道了什么?
(板書課題:約數和倍數的意義)
四、隨堂練習
1、下面的說法對嗎?說出理由.
(1)因為36÷9=4,所以36是倍數,9是約數.
(2)57是3的倍數.
(3)1是1、2、3、4、5,...的約數.
2、下面的數,哪些是60的約數,哪些是6的倍數?
3412162460
教師說明:一個數可以是另一個數的約數,也可以是某個數的倍數.
3、下面的說法對嗎?為什么?
(1)1.8能被0.2除盡.()1.8能被0.2整除.()
1.8是0.2的倍數.()1.8是0.2的9倍.()
(2)若a÷b=10,那么:
a一定是b的倍數.()a能被b整除.()
b可能是a的約數.()a能被b除盡.()
五、布置作業
1、先寫出下面每個數的約數,再寫出下面每個數的倍數(按照從小到大的順序各寫5個)
101336
2、在下面的圈里填上適當的數.
六、板書設計
約數和倍數的意義
探究活動
【五年級《約數和倍數的意義》教案】相關文章:
約數和倍數的意義的教案09-05
約數和倍數的意義數學教案(精選10篇)03-05
數學五年級約數和倍數意義說課稿范文03-26
約數和倍數的教學反思08-18
約數和倍數教學實錄03-12
(優選)約數和倍數教學實錄03-13
《倍數和因數》教案03-18
《2和5的倍數的特征》教案04-11
五年級下冊因數和倍數數學教案02-27
公倍數和公因數教案設計12-19