- 初二數學一元一次函數教案 推薦度:
- 相關推薦
初二數學一元一次函數教案
作為一名為他人授業解惑的教育工作者,就有可能用到教案,通過教案準備可以更好地根據具體情況對教學進程做適當的必要的調整。我們該怎么去寫教案呢?以下是小編收集整理的初二數學一元一次函數教案,僅供參考,歡迎大家閱讀。
教學目標:
知識與技能
1、掌握直角三角形的判別條件,并能進行簡單應用;
2、進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型、
3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論、
情感態度與價值觀
敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識、
教學重點
運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論、
教學難點
會辨析哪些問題應用哪個結論、
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學過程:
復習引入:
請學生復述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法、
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
⒈如何來判斷?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17、
(1)這三組數都滿足a2+b2=c2嗎?
(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形、
滿足a2+b2=c2的三個正整數,稱為勾股數、
⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習:
⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由、
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22、
⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角、
⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、
⒋習題1、3
課堂小結:
⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形、
⒉滿足a2+b2=c2的三個正整數,稱為勾股數、勾股數擴大相同倍數后,仍為勾股數、
【初二數學一元一次函數教案】相關文章:
初二數學一元一次函數教案03-01
初二數學教案《一次函數》10-12
初二數學一次函數復習訓練題06-20
一次函數的圖象北師大版數學初二上冊教案10-18
初二數學一次函數單元測試題07-12
一次函數教案04-23
一次函數與一元一次不等式說課稿07-15
《一次函數與一元一次不等式》說課稿02-21
初二數學教案03-02
初二數學優秀教案10-11