- 相關推薦
數學滬科版七年級教案文案
隨著社交網絡開始流行,越來越多人鐘情于在朋友圈發布文案,文案用于記錄和分享生活中有意義的事。還在苦苦尋找優秀經典的文案嗎?以下是小編幫大家整理的數學滬科版七年級教案文案,歡迎閱讀,希望大家能夠喜歡。
教學目標
1.了解的概念和的畫法,掌握的三要素;
2.會用上的點表示有理數,會利用比較有理數的大小;
3.使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議
一、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.
二、知識結構
有了,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義
三要素
應用
數形結合
規定了原點、正方向、單位長度的直線叫
原 點
正方向
單位長度
幫助理解有理數的概念,每個有理數都可用上的點表示,但上的點并非都是有理數
比較有理數大小,上右邊的數總比左邊的數要大
在理解并掌握概念的基礎之上,要會畫出,能將已知數在上表示出來,能說出上已知點所表示的數,要知道所有的有理數都可以用上的點表示,會利用比較有理數的大小。
三、教法建議
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據。與它所在的位置無關,但為了教學上需要,一般水平放置的,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與上的點的對應關系,應該明確的是有理數可以用上的點表示,但上的點與有理數并不存在一一對應的關系。根據幾個有理數在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、的相關知識點
1.的概念
(1)規定了原點、正方向和單位長度的直線叫做.
這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規定的
(2)能形象地表示數,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數.
以是理解有理數概念與運算的重要工具.有了,數和形得到初步結合,數與表示數的圖形(如)相結合的思想是學習數學的重要思想.另外,能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對的學習.
2.的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用比較有理數的大小
(1)在上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“ ”的寫法,正確應寫成“ ”。
五、定義的理解
1.規定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數,都可以用上的點表示.例如:在上畫出表示下列各數的點(如圖2).
A點表示-4; B點表示-1.5;
O點表示0; C點表示3.5;
D點表示6.
從上面的例子不難看出,在上表示的兩個數,右邊的數總比左邊的數大,又從正數和負數在上的位置,可以知道:
正數都大于0,負數都小于0,正數大于一切負數.
因為正數都大于0,反過來,大于0的數都是正數,所以,我們可以用 ,表示 是正數;反之,知道 是正數也可以表示為 。
同理, ,表示 是負數;反之 是負數也可以表示為 。
3.正常見幾種錯誤
1)沒有方向
2)沒有原點
3)單位長度不統一
【數學滬科版七年級教案文案】相關文章:
滬科版七年級數學全冊教案模板10-14
滬科版七年級數學課件04-13
滬科版垂線課件03-19
滬科版九上數學教學工作計劃,滬科版九上數學教學計劃11-21
滬科版七年級數學下冊的教學計劃11-11
滬科版七年級數學下教學計劃06-16
滬科版初中物理說課稿07-09
滬科版勾股定理說課稿06-10
滬科版八年級下冊數學全教案03-16
滬科版八年級數學下冊教案最新09-30