【熱門】初一數學教案
作為一名優秀的教育工作者,可能需要進行教案編寫工作,教案有助于學生理解并掌握系統的知識。教案應該怎么寫呢?以下是小編精心整理的初一數學教案,僅供參考,希望能夠幫助到大家。
初一數學教案1
學習目標:
1、從實際生活中感受有序數對的意義,并會確定平面內物體的位置。
2、通過有序數對確定位置,讓學生感受二維空間觀,發展符號感及抽象思維能力,讓學生體會具體-抽象-具體的數學學習過程。
3、培養學生的合作交流意識和探索精神,創造性思維意識。體驗數學來源于生活及應用于生活的意識,更好的激發學習興趣。
學習重點:理解有序數對的概念,用有序數對來表示位置。
學習難點:理解有序數對是有序的并用它解決實際問題,
學習過程:
一、 學前準備
預習疑難: 。
二、 探索與思考
1、 觀察思考:觀察下圖,什么時候氣溫最低?什么時候氣溫最高?你是如何發現的?
2、想一想:你看過電影嗎?在電影院內,確定一個座位一般需要幾個數據,為什么?
(1)如何找到6排3號這個座位呢?
(2)在電影票上6排3號與3排6號有什么不同?
(3)如果將6排3號簡記作(6,3),那么3排6號如何表示?
(4)(5,6)表示什么含義?(6,5)呢?
3、結論:①可用排數和列數兩個不同的數來確定位置;
、谂艛岛土袛档南群箜樞驅ξ恢糜杏绊。
4、概念:
有序數對:用含有 的詞表示一個 位置,其中各個數表示不同的含義,我們把這種 兩個數a與b組成的數對,叫做有序數對,記作(a,b)。
三、 理解與運用
(一)用有序數對來表示位置的情況是很常見的.如人們常用經緯度來表示地球上的地點.你有沒有見過用其他的方式來表示位置的?
(二)應用
例1 如圖,點A表示3街與5大道的十字路口,點B表示5街與3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一條路徑,那么你能用同樣的方法寫出由A到B的其他幾條路徑嗎?
分析:圖中確定點用前一個數表示大街,后一個數表示大道。
解:其他的路徑可以是:
(3,5)(4,5)(4,4)(5,4)(5,3);
(3,5)( ,5)(4,4)( , )(5,3);
(3,5)( , )( , )( , )(5,3);
四、學習體會:
1、 本節課你有哪些收獲?你還有哪些疑惑?
2、 預習時的疑難解決了嗎?
五、自我檢測
1、小游戲:
怪獸吃豆豆是一種計算機游戲,圖中的標志表示怪獸先后經過的幾個位置. 如果用(1,2)表示怪獸按圖中箭頭所指路線經過的第3個位置. 那么你能用同樣的方表示出圖中怪獸經過的其他幾個位置嗎?
2、如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
3、右圖是國際象棋的棋盤,E2在什么位置?又如何描述A、B、C的位置?
4、有趣玩一玩:
中國象棋中的馬頗有騎士風度,自古有馬踏八方之說,如圖六(1),按中國象棋中馬的行棋規則,圖中的馬下一步有A、B、C、D、E、F、G、H八種不同選擇,它的走法就象一步從日字形長方形的對角線的一個端點到另一個端點,不能多也不能少。
要將圖六(2)中的馬走到指定的位置P處,即從(四,6)走到(六,4),現提供一種走法:(四,6)(六,5)(四,4)(五,2)(六,4)
(1) 下面提供另一走法,請填上所缺的一步:(四,6)(五,8)(七,7)___(六,4)
(2)請你再給出另一種走法(要與前面的兩種走法不完全相同即可,步數不限),你的走法是:
六、方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
1、如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么
數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
2、如圖是某城市市區的一部分示意圖,對市政府來說:
(1) 北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?
(2) 火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
課題:6.1.2平面直角坐標系(第一課時) 課型:新授
學習目標:1.理解平面直角坐標系,以及橫軸、縱軸、原點、坐標等的概念.
2.認識并能畫出平面直角坐標系.
3.能在給定直角坐標系中,由點的位置確定點的坐標,由點的坐標確定點的位置
學習重點:根據點的坐標在直角坐標系中描出點的位置。
學習難點:探索特殊的點與坐標之間的關系。
學具準備:坐標紙,三角板
學習過程:
一、學前準備
1、預習疑難: 。
2、填空:①規定了 、 、 的直線叫做數軸。
、跀递S上原點及原點右邊的點表示的數是 ;原點左邊的點表示的數是 。
、郛嫈递S時,一般規定向 (或向 )為正方向。
二、探索與思考
(一)平面直角坐標系
1、觀察:在數軸上,點A的坐標為 ,點B的坐標為 。
即:數軸上的點可以用一個 來表示,這個數叫做這個點的 。
反過來,知道數軸上的一個點的坐標,這個點在數軸上的位置也就確定了。
2、思考:能不能有一種辦法來確定平面內的點的位置呢?
3、平面直角坐標系概念:
平面內畫兩條互相 、原點 的數軸,組成平面直角坐標系.
水平的數軸稱為 或 ,習慣上取向 為正方向;
豎直的數軸為 或 ,取向 為正方向;
兩個坐標軸的交點為平面直角坐標系的 。
4、點的坐標:
我們用一對 表示平面上的`點,這對數叫 。表示方法為(a,b).a是點對應 上的數值,b是點在 上對應的數值。
(二)如何在平面直角坐標系中表示一個點
1、以A(2,3)為例,表示方法為:
A點在x軸上的坐標為 ,A點在y軸上的坐標為 ,
A點在平面直角坐標系中的坐標為(2,3),記作:A(2,3)
2、方法歸納:由點A分別向X軸和 作垂線。
3、強調:X軸上的坐標寫在前面。
4、活動:你能說出點B、C、D的坐標嗎?
注意:橫坐標和縱坐標不要寫反。
5、思考歸納:原點O的坐標是( , ),
x軸上的點縱坐標都是 , y軸上的橫坐標都是 。
橫軸上的點坐標為(x,0) ,縱軸上的點坐標為(0,y)
(三)象限:
1、 建立平面直角坐標系后,平面被坐標軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
第二象限(,+) 第一象限(+,+)
第三象限(,) 第四象限(+,)
2、注意:坐標軸上的點不屬于任何一個象限
3、你能說出上面例子中各點在第幾象限嗎?
三、理解與運用
1、在游戲中學數學:以某同學為原點,以他所在的橫排為x軸,以這一組為y軸,相鄰兩個同學之間的距離為單位長度建立坐標系.
(1)下面大家一起找一找自己在坐標系中的坐標分別是什么?
(2)下面這些坐標分別表示誰的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)
2、例 寫出圖中的多邊形ABCDEF各個頂點的坐標.
(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?
(2)線段CE的位置有什么特點?
(3)坐標軸上點的坐標有什么特點?
3、歸納:點的位置及其坐標特征:
①.各象限內的點;
②.各坐標軸上的點;
、.各象限角平分線上的點;
、.對稱于坐標軸的兩點;
、.對稱于原點的兩點。
4、對應練習:教材43頁1、2題(在書上完成)。
四、學習體會:
1、本節課你有哪些收獲?你還有哪些疑惑?
2、預習時的疑難解決了嗎?
五、自我檢測:
(一)選擇題:
1、若點M(x,y)滿足x+y=0,則點M位于( )。
(A)第一、三象限兩坐標軸夾角的平分線上; (B)x軸上;
(C) x軸上; (D)第二、四象限兩坐標軸夾角的平分線上。
2、第四象限中的點P(a,b)到x軸的距離是( )
(A)a (B)-a (C)-b (D)b
3、點A(-m,1-2m)關于原點對稱的點在第一象限,那么m的取值范圍是( )。
(A)m(B)m (C)m (D)m0 。
(二)填空題:
1、點P(3,-4)關于原點的對稱點的坐標為___________;關于x軸的對稱點的坐標為___________;關于y軸的對稱點的坐標為____________
2、已知A(a,6),B(2,b)兩點。
、佼擜、B關于x軸對稱時,a=_____;b=_____。
、诋擜、B關于y軸對稱時,a=_____;b=_____。
、郛擜、B關于原點對稱時,a=_____;b=_____。
六、解答題
1.在下圖中,分別寫出八邊形各個頂點的坐標.
2.下圖是畫在方格紙上的某島簡圖.
(1)分別寫出地點A,L,O,P,E的坐標;
(2)(4,7)(5,5)(2,5)所代表的地點分別是什么?
初一數學教案2
一、學習與導學目標:
知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;
過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;
情感態度:通過師生、生生合作學習,促進交流,激發興趣。
二、學程與導程活動:
A、準備活動:
1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數,F在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。
2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。
提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?
歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。
B、學習概念:
1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3?梢姡合喾磾凳浅蓪Τ霈F的,不能單獨存在。
一般地,a和-a互為相反數!-a”可讀成“a的'相反數”。
2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)
3、從上述意義上看,你看如何規定0的相反數更為合理?
商討得:0的相反數仍是0,即0的相反數等于它本身。
C、應用舉例:
1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。
2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。
3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。
結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?
4、化簡下列各數P124練習,你愿意繼續嘗試化簡下列各式嗎?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能試著總結規律嗎?(括號內外同號結果為正,括號內外異號結果為負)。
5、若a=-5,則-a=;若-x=7,則x=。
三、筆記與板書提綱:
課題應用舉例中的2
活動引例應用舉例中的4(學生練習),5
概念
四、練習與拓展選題:
1、教科書P18/3;
2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。
初一數學教案3
【教學內容】
第二章 2.1 正數與負數 2.2 數軸
【教學目標】
1、會判斷一個數是正數還是負數,理解負數的意義。
2、會把已知數在數軸上表示,能說出已知點所表示的數。
3、了解數軸的原點、正方向、單位長度,能畫出數軸。
4、會比較數軸上數的大小。
【知識講解】
一、本講主要學習內容
1、負數的意義及表示 2、零的位置和地位
3、有理數的.分類 4、數軸概念及三要素
5、數軸上數與點的對應關系 6、數軸上數的比較大小
其中,負數的概念,數軸的概念及其三要素以及數軸上數的比較大小是重點。負數的意義是難點。
下面概述一下這六點的主要內容
1、負數的意義及表示
把大于0的數叫正數如5,3,+3等。在正數前加上“-”號的數叫做負數如-5,-3,- 等。負數是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。
2、零的位置和地位
零既不是正數,也不是負數,但它是自然數。它可以表示沒有,也可以在數軸上分隔正數和分數,甚至可以表示始點,表示缺位,這將在下面詳細介紹。
3、有理數的分類
正整數、零、負整數統稱為整數,正分數、負分數統稱為分數,整數和分數統稱為有理數。
正整數
整數 零 正有理數
有理數 負整數 或 有理數 零
分數 正分數 負有理數
負分數
初一數學教案4
教學目標
(一)教學知識點
1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
(二)能力訓練要求
1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的`探索能力和創新精神.
2.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想.
3.通過學生共同觀察和討論,培養大家的合作交流意識.
(三)情感與價值觀要求
1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.
2.具有初步的創新精神和實踐能力.
教學重點
1.體會方程與函數之間的聯系.
2.理解何時方程有兩個不等的實根,兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
教學難點
1.探索方程與函數之間的聯系的過程.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系.
教學方法
討論探索法.
教具準備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學過程
、.創設問題情境,引入新課
[師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數中的函數值y=0時,一次函數y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.
現在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節課我們將探索有關問題。
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;
(2)分解因式的結果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數都必須低于原來的多項式的次數;
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知
例題學習:
P166例1、例2(略)
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習
1.P167練習;
2.看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數學思想的理解。
活動8:課后作業
課本P170習題的第1、4大題。
學生自主完成
通過作業的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)
15.4.1提公因式法例題
1.因式分解的定義
2.提公因式法
初一數學教案5
一、教學目標
1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。
2.能用適當的圖形和語言表示自己的思考結果。
二、教學重點和難點
本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。
三、教學手段
引導活動討論
引導:意在教師講解七巧板的歷史,七巧板制作的方法。
活動:人人參與制作七巧板,拼擺七巧板的圖案。
討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。
四、教學方法
啟發式教學
五、教學過程
1 創設情景,引入新課
先用多媒體顯示各種已拼擺好的'動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。
2 合作交流,探索新知
利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。
(1) 你的拼圖用了什么形狀的板?你想表現什么?
(2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。
(3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。
通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。
3 范例教學
介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。
4 反饋練習
由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。
5 歸納小結
通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。
六、練習設計
利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。
七、板書設計
4.7有趣的七巧板
(一)知識回顧 (三)例題解析 (五)課堂小結
(二)觀察發現 (四)課堂練習 練習設計
初一數學教案6
教學目標
1.使學生正確理解數軸的意義,掌握數軸的三要素;
2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.
難點:正確理解有理數與數軸上點的對應關系.
課堂教學過程設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節課所要學習的內容——數軸.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的'點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸.
進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習
例1畫一個數軸,并在數軸上畫出表示下列各數的點:
例2指出數軸上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面數軸上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.
五、作業
1.在下面數軸上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面數軸上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初一數學教案7
教學目標:了解總體、個體、樣本及樣本容的概念以及抽樣調查的意義,明確在什么情況下采用抽樣調查或全面調查,進一步熟悉對數據的收集、整理、描述和分析。
教學重點:對概念的理解及對數據收集整理。
教學難點:總體概念的理解和隨機抽樣的合理性。
教學過程:
一、情景創設,引入新課
上節課我們對全班同學對自己所喜愛的學科進行了調查,那么如果要對某校20xx名學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,怎樣進行調查?
二、新課
1.抽樣調查的意義
在上述問題中,由于學生人數比較多,全面調查花費的時間長,消耗的人力、物力大,因此需要尋求既省時又省力又能解決問題的方法,這就是抽樣調查。
抽樣調查:抽取一部分對象進行調查的方法,叫抽樣調查。
2.總體、個體、樣本、樣本容量的意義
總體:所要考察對象的全體。
個體:總體的每一個考察對象叫個體。
樣本:抽取的部分個體叫做一個樣本。
樣本容量:樣本中個體的數目。
3.抽樣的注意事項
、俪闃诱{查要具有廣泛性和代表性,即樣本容量要恰當.樣本容量過少,那么不能很好地反映總體的情況,比如要調查20xx名學生對電視節目的喜愛情況,若抽取的樣本容量為幾名學生就不能反映20xx名學生的.喜愛情況;如果抽取的學生人數過多,必然花費大量的時間、精力,達不到省時省力的目的.再如要調查60歲以上的老人的生病情況,在醫院去抽取一些60歲以上的住院病人,它又不具有代表性,則應從60歲以上的老人冊中任意抽取部分老人的生病情況來反映總體的60歲老人的生病情況,才能達到目的.
②抽取的樣本要有隨機性.為了使樣本能較好地反映總體的情況,除了有合適的樣本容量外,抽取時還要盡量使每一個個體都有相等的機會被抽到,所謂隨機就是機會相等.例如在20xx名學生的注冊學號中,隨意抽取100個學號,調查這些學號對應的100名學生.當然還可以在上學或放學時,在學校門口隨機進行調查;或則每隔10個人調查一個,直到調查滿確定的樣本容量.
總體說來抽樣調查最大的優點就是在抽樣過程中避免了人為的干擾和偏差,因此隨機抽樣是最科學、應用最廣泛的抽樣方法,一般情況下,樣本容量越大,估計精確度就越高.
下面是某同學抽取樣本數量為100的調查節目統計表:
表中的數據信息也可以用條形統計圖或扇形統計圖來描述。
初一數學教案8
大家都聽說過一句名言:“世界上不是缺少美,而是缺少發現美的眼睛”,大家知道這句話是誰說的嗎?不知道沒關系,大家記住下一句名言就好:“世界上不是缺少數學,而是缺少發現數學的眼睛——李老師語錄”,那這個著名的李老師是誰呢?遠在天邊,近在眼前。不要太驚訝,想要簽名的下課來找我就行。
好,那我們接下來就用發現數學的眼睛來看一看,生活中常見的幾何體都有哪些物體,分別是什么形狀?水杯,籃球,冰激凌,金字塔,黑板擦。分別對應圓柱,球,圓錐,棱錐,棱柱。其中長方體,正方體是特殊的棱柱。
好了,幾何體我們都了解了,面對這些雜亂無章的幾何體是不是感覺很亂,接下來我們就給幾何體分分類:
一、常見幾何體分類
1、 按照柱、錐、球分類
圓柱
柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱。
錐圓錐
棱錐
2、 按照有無頂點分類
生活中的'立體圖形
3、 按照有無曲面分類
二、棱柱(直)
1、 基本概念
。1) 棱:在棱柱中,任何相鄰的兩個面的交線叫做棱。
。2) 側棱:在棱柱中,相鄰兩個側面的交線叫做側棱。
2、 特征
。1) 棱柱的所有側棱長相等。
(2) 棱柱的上下底面完全相同且都是多邊形。
。3) 棱柱的側面都是長方形。
。4) n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
3、 分類
按照底面多邊形的邊數分類,底面幾邊形就是幾棱柱。
三、圖形的構成元素
點:線與線橡膠的地方就是點。
1 線:面與面相交的地方就是線。
面:包圍著體的是面。
2、聯系
點動成線,線動成面,面動成體。
展開與折疊
一、正方體的展開圖(11種)
1-4-1型:(6種)
2-3-1型(3種)
2-2-2型(1種)
3-3型(
1種)
二、正方體的折疊
展開圖中不出現一字型、田字形、凹字形,2-4型,若有此形狀的展開圖則折不成正方體。
三、總結規律:
一線不過四,
田凹應棄之;
相間、Z端是對面,
間二、拐角鄰面知。
四、常見幾何體的展開圖
三、截一個幾何體
一、正方體的截面
用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
可能出現的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、五邊形、六邊形、正六邊形
不可能出現:鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形
二、常見幾何體截面
四、從三個方向看物體的形狀
一、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
二、聯系
主俯長對正,主左高平齊,俯左寬相等。
三、畫法
一看,二畫,三查(尺寸,虛實)
初一數學教案9
初一上冊數學教案,歡迎各位老師和學生參考!
學習目標:1、理解有理數的絕對值和相反數的意義。
2、會求已知數的相反數和絕對值。
3、會用絕對值比較兩個負數的大小。
4、經歷將實際問題數學化的過程,感受數學與生活的聯系。
學習重點:1.會用絕對值比較兩個負數的大小。
2.會求已知數的相反數和絕對值。
學習難點:理解有理數的絕對值和相反數的意義。
學習過程:
一、創設情境
根據絕對值與相反數的意義填空:
1、
2、
-5的相反數是______,-10.5的相反數是______, 的相反數是______;
3、|0|=______,0的相反數是______。
二、探索感悟
1、議一議
(1)任意說出一個數,說出它的絕對值、它的相反數。
(2)一個數的絕對值與這個數本身或它的'相反數有什么關系?
2、想一想
(1)2與3哪個大?這兩個數的絕對值哪個大?
(2)-1與-4哪個大?這兩個數的絕對值哪個大?
(3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?
(4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?
三.例題精講
例1. 求下列各數的絕對值:
+9,-16,-0.2,0.
求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?
(2)數軸上的點的大小是如何排列的?
例2比較-10.12與-5.2的大小。
例3.求6、-6、14 、-14 的絕對值。
小節與思考:
這節課你有何收獲?
四.練習
1. 填空:
⑴ 的符號是 ,絕對值是 ;
、10.5的符號是 ,絕對值是
⑶符號是+號,絕對值是 的數是
、确柺-號,絕對值是9的數是 ;
⑸符號是-號,絕對值是0.37的數是 .
2. 正式足球比賽時所用足球的質量有嚴格的規定,下表是6個足球的質量檢測結果(用正數記超過規定質量的克數,用負數記不足規定質量的克數).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數的大小
(1)-0.7與-1.7 (2) (3) (4)-5與0
五、布置作業:
P25 習題2.3 5
家庭作業:《評價手冊》 《補充習題》
六、學后記/教后記
這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!
初一數學教案10
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
。ㄒ唬┊嬈叫芯
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
。ǘ┨羁疹}:
1、在同一平面內,與已知直線L平行的'直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
。1)L1與L2 沒有公共點,則 L1與L2 ;
。2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數學教案11
學習目標:
理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。
學習重點:
多項式乘法法則及其應用。
學習難點:
理解運算法則及其探索過程。
一、課前訓練:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索練習:
(1)如圖1大長方形,其面積用四個小長方形面積
表示為: ;
(2)大長方形的長為 ,寬為 ,要
計算其面積就是 ,其中包含的
運算為 。
由上面的問題可發現:( )( )=
多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的.積 。
三.運用法則規范解題。
四.鞏固練習:
3.計算:① ,
4.計算:
五.提高拓展練習:
5.若 求m,n的值.
6.已知 的結果中不含 項和 項,求m,n的值.
7.計算(a+b+c)(c+d+e),你有什么發現?
六.晚間訓練:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)觀察:4×6=24
14×16=224
24×26=624
34×36=1224
你發現其中的規律嗎?你能用代數式表示這一規律嗎?
(2)利用(1)中的規律計算124×126。
4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。
(1)設AP= ,求兩個正方形的面積之和S;
(2)當AP分別 時,比較S的大小。
初一數學教案12
7.3.1多邊形
[教學目標]
1.了解多邊形及有關概念,理解正多邊形及其有關概念.
2.區別凸多邊形與凹多邊形.
[教學重點、難點]
1.重點:
。1)了解多邊形及其有關概念,理解正多邊形及其有關概念.
。2)區別凸多邊形和凹多邊形.
2.難點:
多邊形定義的準確理解.
[教學過程]
一、新課講授
投影:圖形見課本P84圖7.3一l.
你能從投影里找出幾個由一些線段圍成的圖形嗎?
上面三圖中讓同學邊看、邊議.
在同學議論的基礎上,老師給以總結,這些線段圍成的圖形有何特性?
。1)它們在同一平面內.
(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.
這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
提問:三角形的定義.
你能仿照三角形的定義給多邊形定義嗎?
1.在平面內,由一些線段首位順次相接組成的圖形叫做多邊形.
如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)
2.多邊形的邊、頂點、內角和外角.
多邊形相鄰兩邊組成的角叫做多邊形的內角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
3.多邊形的對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.
讓學生畫出五邊形的所有對角線.
4.凸多邊形與凹多邊形
看投影:圖形見課本P85.7.3—6.
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.
5.正多邊形
由正方形的特征出發,得出正多邊形的概念.
各個角都相等,各條邊都相等的.多邊形叫做正多邊形.
二、課堂練習
課本P86練習1.2.
三、課堂小結
引導學生總結本節課的相關概念.
四、課后作業
課本P90第1題.
備用題:
一、判斷題.
1.由四條線段首尾順次相接組成的圖形叫四邊形.()
2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()
3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側,叫做四邊形.()
4.在同一平面內,四條線段首尾順次連接組成的圖形叫四邊形.()
二、填空題.
1.連接多邊形的線段,叫做多邊形的對角線.
2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.
3.各個角,各條邊的多邊形,叫正多邊形.
三、解答題.
1.畫出圖(1)中的六邊形ABCDEF的所有對角線.
2.如圖(2),O為四邊形ABCD內一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數有何關系?
3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數有何關系?
4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數有何關系?
初一數學教案13
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數學方法和思想的重要性及其應用的廣泛性。體會數學的價值,培養對數學學習的`熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數學思想方法,建構知識網絡。
四、教學準備:多媒體課件,多邊形紙模
五、教學步驟與過程
(一)導入復習
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節課我們就來重點整理和復習有關這些多邊形的面積的知識。
板書課題:多邊形面積計算復習課
。ǘ┗仡櫿,建構網絡
1.復習平行四邊形、三角形、梯形面積公式的推導過程。
、耪埓蠹一貞浺幌:平行四邊形、三角形、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
⑵根據學生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七,作業布置:練習十九
板書設計
S=ah÷2
S=abS=ah
S=(a+b)h÷2
初一數學教案14
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的.等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
初一數學教案15
多邊形及其內角和
知識點一:多邊形的概念
⑴多邊形定義:在平面內,由一些線段首位順次相接組成的圖形叫做________.
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________.(一個多邊形由幾條線段組成,就叫做幾邊形.)
多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序.如五邊形ABCDE.
、贫噙呅蔚倪、頂點、內角和外角.
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________.
、嵌噙呅蔚膶蔷
連接多邊形的不相鄰的兩個頂點的線段,叫做___________________.畫一個五邊形ABCDE,并畫出所有的對角線.知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形.
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________.
探究多邊形的對角線條數
知識點三:多邊形的內角和公式推導
1、我們知道三角形的內角和為__________.
2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°.
3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果.從中你得到什么結論?
探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和.再畫幾個四邊形,?量一量、算一算.你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。
探究2:從上面的問題,你能想出五邊形和六邊形的內角和各是多少嗎?觀察圖3,?請填空:
(1)從五邊形的一個頂點出發,可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______.
。2)從六邊形的一個頂點出發,可以引_____條對角線,
它們將六邊形分為_____個三角形,六邊形的內角和等于180°×______.探究3:一般地,怎樣求n邊形的內角和呢?請填空:
從n邊形的一個頂點出發,可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______.
綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數為n,則
n邊形的內角和等于______________.
想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形.除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數),結果還相同嗎?多邊形的外角和定理:.理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°.求:∠B與∠D的關系.
自我檢測:
。ㄒ唬⑴袛囝}.
1.當多邊形邊數增加時,它的內角和也隨著增加.()
2.當多邊形邊數增加時.它的外角和也隨著增加.()
3.三角形的外角和與一多邊形的外角和相等.()
4.從n邊形一個頂點出發,可以引出(n一2)條對角線,得到(n一2)個三角形.()
5.四邊形的'四個內角至少有一個角不小于直角.()
(二)、填空題.
1.一個多邊形的每一個外角都等于30°,則這個多邊形為
2.一個多邊形的每個內角都等于135°,則這個多邊形為
3.內角和等于外角和的多邊形是邊形.
4.內角和為1440°的多邊形是
5.若多邊形內角和等于外角和的3倍,則這個多邊形是邊形.
6.五邊形的對角線有
7.一個多邊形的內角和為4320°,則它的邊數為
8.多邊形每個內角都相等,內角和為720°,則它的每一個外角為
9.四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠.
10.四邊形的四個內角中,直角最多有個,鈍角最多有銳角最
。ㄈ┙獯痤}
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?
3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數。
4、一個多邊形的每一個內角都等于其相等外角的
5.一個多邊形少一個內角的度數和為2300°.
(1)求它的邊數;(2)求少的那個內角的度數.
【初一數學教案】相關文章:
初一數學教案11-10
初一數學教案12-17
初一數學教案上冊09-26
山東初一數學教案09-25
初一數學教案:相交線06-12
初一數學教案:相交線08-24
初一數學教案(15篇)01-08
初一數學教案15篇12-17
初一數學教案有序數對06-12
初一數學教案:有序數對11-24