- 相關推薦
【熱】八年級數學教案
作為一名人民教師,編寫教案是必不可少的,教案有利于教學水平的提高,有助于教研活動的開展。我們應該怎么寫教案呢?下面是小編幫大家整理的八年級數學教案,僅供參考,大家一起來看看吧。
八年級數學教案1
【教學目標】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學過程】
一、課堂導入
1.讓學生填寫[思考],學生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?可以發現,這些式子都像分數一樣都是A÷B的形式.分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.
二、例題講解
例1:當x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當m為何值時,分式的值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
3.當x為何值時,分式的值為0?
四、小結
談談你的收獲.
五、布置作業
課本128~129頁練習.
八年級數學教案2
教學目標
1.知識與技能
領會運用完全平方公式進行因式分解的方法,發展推理能力.
2.過程與方法
經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態度與價值觀
培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.
重、難點與關鍵
1.重點:理解完全平方公式因式分解,并學會應用.
2.難點:靈活地應用公式法進行因式分解.
3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節課內容.
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學生活動】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學習,應用所學
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.
三、隨堂練習,鞏固深化
課本P170練習第1、2題.
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結,發展潛能
由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.
五、布置作業,專題突破
八年級數學教案3
學習重點:函數的概念 及確定自變量的取值范圍。
學習難點:認識函數,領會函數的意義。
【自主復習知識準備】
請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。
【自主探究知識應用】
請看書72——74頁內容,完成下列問題:
1、 思考書中第72頁的問題,歸納出變量之間的關系。
2、 完成書上第73頁的思考,體會圖形中體現的變量和變量之間的關系。
3、 歸納出函數的定義,明確函數定義中必須要滿足的條件。
歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應,那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。
補充小結:
(1)函數的定義:
(2)必須是一個變化過程;
(3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應。
三、鞏固與拓展:
例1:一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。
(1)寫出表示y與x的函數關系式.
(2)指出自變量x的取值范圍.
(3) 汽車行駛200千米時,油箱中還有多少汽油?
【當堂檢測知識升華】
1、判斷下列變量之間是不是函數關系:
(1)長方形的寬一定時,其長與面積;
(2)等腰三角形的底邊長與面積;
(3)某人的年齡與身高;
2、寫出下列函數的解析式.
(1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數關系的式子.
(2)汽車加油時,加油槍的流量為10L/min.
①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數關系;
②如果加油時,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數關系.
(3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規定,取款時,應繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數x之間的關系式.
(4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數是S,求S與n之間的關系式.
八年級變量與函數(2)數學教案的全部內容由數學網提供,教材中的每一個問題,每一個環節,都有教師依據學生學習的實際和教材的實際進行有針對性的設置,希望大家喜歡!
八年級數學教案4
一、教學目標
1、理解分式的基本性質。
2、會用分式的基本性質將分式變形。
二、重點、難點
1、重點:理解分式的基本性質。
2、難點:靈活應用分式的基本性質將分式變形。
3、認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、練習題的意圖分析
1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。
四、課堂引入
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3、提問分數的基本性質,讓學生類比猜想出分式的基本性質。
五、例題講解
P7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
P11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
八年級數學教案5
教學目標:
1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。
3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
難點:分析典型圖案的設計意圖。
疑點:在設計的圖案中清晰地表現自己的設計意圖
教具學具準備:
提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學過程設計:
1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡單地復習平移、旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內練習
(1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
(四)課時小結
本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)
八年級數學上冊教案(五)延伸拓展
進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。
八年級數學教案6
一、內容和內容解析
1.內容
三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.
2.內容解析
本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.
本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.
二、目標和目標解析
1.教學目標
(1)理解三角形的高、中線與角平分線等概念;
(2)會用工具畫三角形的高、中線與角平分線;
2.教學目標解析
(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.
(3)掌握三角形的高、中線與角平分線的畫法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.
三、教學問題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的.頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.
八年級數學教案7
一、教材分析教材的地位和作用:
本節內容是第一課時《軸對稱》,本節立足于學生已有的生活經驗和數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度認識軸對稱的特征;同時本節內容與圖形的三種變換操作(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯系,通過對這一節課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質及后面學習等腰三角形和圓等有關知識奠定基礎。同時這一節也是聯系數學與生活的橋梁。
二、學情分析
八年級學生有一定的知識水平,已經初步形成了一定觀察能力、語言表達能力,這節課是在學生學習了“全等三角形”相關內容之后安排的一節課,學生已經具備了一定的推理能力,因此,這節課通過觀察生活中的實例和動手實踐,讓學生自己去發現和總結軸對稱圖形和軸對稱的概念及它們之間的區別與聯系是切實可行的。
三、教學目標及重點、難點的確定
根據新課程標準、教材內容特點、和學生已有的認知結構、心理特征,我確定本節教學目標、重點、難點如下:
(一)教學目標:
1、知識技能
(1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.
(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.
(3)了解軸對稱圖形和軸對稱的聯系與區別.
2、過程與方法目標
經歷“觀察——比較——操作——概括——總結一應用”的學習過程,培養學生的動手實踐能力、抽象思維和語言表達能力.
3、情感、態度與價值觀
通過對生活中數學問題的探究,進一步提高學生學數學、用數學的意識,在自主探究、合作交流的過程中,體會數學的重要作用,培養學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。
(二)教學重點:軸對稱圖形和軸對稱的有關概念.
(三)教學難點:軸對稱圖形與軸對稱的聯系、區別
.四、教法和學法設計
本節課根據教材內容的特點和八年級學生的知識結構和心理特征。我選擇的:
【教法策略】采用以直觀演示法和實驗發現法為主,設疑誘導法為輔。教學中教學中通過豐富的圖片展示,創設出問題情景,誘導學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發學生探求知識的欲望,逐步推導歸納得出結論,使學生始終處于主動探索問題的積極狀態,使不同層次學生的知識水平得到恰當的發展和提高。
【學法策略】:讓學生在“觀察----比較——操作——概括——檢驗——應用”的學習過程中,自主參與知識的發生、發展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節課的有關內容。
【輔助策略】我利用多媒體課件輔助教學,適時呈現問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率
五、說程序設計:
新的課程標準指出學生的學習內容應該是現實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數學活動。為了達到預期的教學目標,我對整個教學過程進行了設計。
(一)、觀圖激趣、設疑導入。
出示圖片,設計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。
[設計意圖]以興趣為先導,創設學生喜聞樂見的故事情景,激發了學生濃厚的學習興趣,
(二)、實踐探索、感悟特征.
《活動一(課件演示)觀察這些圖形有什么特點?》在這個環節中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當地引導,讓學生發現:把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。
為了進一步認識軸對稱圖形的特點又出示了一組練習
(練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸
[設計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發了學生的學習興趣,而且也拓展了學生的知識面。
(三)、動手操作、再度探索新知。
將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養學生的動手能力,從而引出軸對稱概念。
再次引導學生討論、歸納得出軸對稱的概念……。之后再結合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結合圖形加以認識。
(四)、鞏固練習、升華新知。
出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,
在這組練習中讓學生動手、動口、動眼、動腦,充分調動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區別與聯系,先讓學生自己歸納,然后用多媒體展示。
(課件演示)軸對稱圖形及兩個圖形成軸對稱區別與聯系
(五)、綜合練習、發展思維。
1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數字、字母和漢字中也有一些可以看成軸對稱圖形。
(1)下面的數字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?
0123456789ABCDEFGH
3、像這樣寫法的漢字哪些是軸對稱圖形?
口工用中由日直水清甲
(這幾道題的練習做到了知識性、技能性、思想性和藝術性溶為一體。這樣設計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發了學生的學習興趣,又讓學生感到數學就在自己的身邊)
(六)歸納小結、布置作業
[設計意圖]培養學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。作業布置要有層次,照顧學生個體差異使不同的人在數學上獲得不同的發展!
六、設計說明
這節課,我依據課程標準、教材特點、遵循學生的認知規律。通過六個環節的教學設計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關于直線成軸對稱兩個概念,指導學生操作、觀察、引導概括,獲取新知;同時注重培養學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節課的理解和說明。
八年級數學教案8
分式方程
教學目標
1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.
2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。
3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值.
教學重點:
將實際問題中的等量 關系用分式方程表示
教學難點:
找實際問題中的等量關系
教學過程:
情境導入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。
根據題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數的方程叫做分式方程
分式方程與整式方程有什么區別?
五、 隨堂練習
(1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據分式方程 編一道應用題,然后同組交流,看誰編得好
六、學 習小結
本節課你學到了哪些知識?有什么感想?
七.作業布置
八年級數學教案9
一、教學目標
1.使學生理解并掌握分式的概念,了解有理式的概念;
2.使學生能夠求出分式有意義的條件;
3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;
4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識.
二、重點、難點、疑點及解決辦法
1.教學重點和難點 明確分式的分母不為零.
2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)
【新課】
1.分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學生舉幾個分式的例子.
(3)學生小結分式的概念中應注意的問題.
①分母中含有字母.
②如同分數一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2.有理式的分類
請學生類比有理數的分類為有理式分類:
例1 當取何值時,下列分式有意義?
(1);
解:由分母得.
∴當時,原分式有意義.
(2);
解:由分母得.
∴當時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實數時,原分式都有意義.
(4).
解:由分母得.
∴當且時,原分式有意義.
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2 當取何值時,下列分式的值為零?
(1);
解:由分子得.
而當時,分母.
∴當時,原分式值為零.
小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當時,分母,分式無意義.
當時,分母.
∴當時,原分式值為零.
(3);
解:由分子得.
而當時,分母.
當時,分母.
∴當或時,原分式值都為零.
(4).
解:由分子得.
而當時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結、擴展
1.分式與分數的區別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習
1.填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2.教材P55中1、2、3.
八、布置作業
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設計
課題 例1
1.定義例2
2.有理式分類
八年級數學教案10
知識結構:
重點與難點分析:
本節內容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.
本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.
教法建議:
本節課教學方法主要是“以學生為主體的討論探索法”。在數學教學中要避免過多告訴學生現成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:
(1)參與探索發現,領略知識形成過程
學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。
(2)采用“類比”的學習方法,獲取知識。
由性質定理的學習,我們得到了幾個推論,自然想到:根據等腰三角形的判定定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當的點撥引導。
(3)總結,形成知識結構
為了使學生對本節課有一個完整的認識,便于今后的應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據?(2)怎樣判定一個三角形是等邊三角形?
一.教學目標:
1.使學生掌握等腰三角形的判定定理及其推論;
2.掌握等腰三角形判定定理的運用;
3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;
4.通過自主學習的發展體驗獲取數學知識的感受;
5.通過知識的縱橫遷移感受數學的辯證特征.
二.教學重點:等腰三角形的判定定理
三.教學難點:性質與判定的區別
四.教學用具:直尺,微機
五.教學方法:以學生為主體的討論探索法
六.教學過程:
1、新課背景知識復習
(1)請同學們說出互逆命題和互逆定理的概念
估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。
(2)等腰三角形的性質定理的內容是什么?并檢驗它的逆命題是否為真命題?
啟發學生用自己的語言敘述上述結論,教師稍加整理后給出規范敘述:
1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
(簡稱“等角對等邊”).
由學生說出已知、求證,使學生進一步熟悉文字轉化為數學語言的方法.
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
教師可引導學生分析:
聯想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結論,不要與性質定理混淆.
(2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.
(3)判定定理得到的結論是三角形是等腰三角形,性質定理是已知三角形是等腰三角形,得到邊邊和角角關系.
2.推論1:三個角都相等的三角形是等邊三角形.
推論2:有一個角等于60°的等腰三角形是等邊三角形.
要讓學生自己推證這兩條推論.
小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.
證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.
3.應用舉例
例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.
分析:讓學生畫圖,寫出已知求證,啟發學生遇到已知中有外角時,常常考慮應用外角的兩個特性①它與相鄰的內角互補;②它等于與它不相鄰的兩個內角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
證明:(略)由學生板演即可.
補充例題:(投影展示)
1.已知:如圖,AB=AD,∠B=∠D.
求證:CB=CD.
分析:解具體問題時要突出邊角轉換環節,要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.
證明:連結BD,在 中, (已知)
(等邊對等角)
(已知)
即
(等教對等邊)
小結:求線段相等一般在三角形中求解,添加適當的輔助線構造三角形,找出邊角關系.
2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.
分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.
證明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小結:
(1)等腰三角形判定定理及推論.
(2)等腰三角形和等邊三角形的證法.
七.練習
教材 P.75中1、2、3.
八.作業
教材 P.83 中 1.1)、2)、3);2、3、4、5.
九.板書設計
八年級數學教案11
教學目標:
1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。
2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。
3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數據的算術平均數。
教學重點:體會平均數、中位數、眾數在具體情境中的意義和應用。
教學難點:對于平均數、中位數、眾數在不同情境中的應用。
教學方法:歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數、中位數、眾數的概念及舉例。
一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。
如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。
中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。
眾數就是一組數據中出現次數最多的那個數據。
如3,2,3,5,3,4中3是眾數。
2、平均數、中位數和眾數的特征:
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。
3、算術平均數和加權平均數有什么區別和聯系:
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4、利用計算器求一組數據的平均數。
利用科學計算器求平均數的方法計算平均數。
二、例題講解:
例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:
每人銷售件數 1800 510 250 210 150 120
人數 113532
(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;
(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。
例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?
三、課堂練習:復習題A組
四、小結:
1、掌握平均數、中位數與眾數的概念及計算。
2、理解算術平均數與加權平均數的聯系與區別。
五、作業:復習題B組、C組(選做)
八年級數學教案12
●教學目標
(一)教學知識點
1.掌握相似 三角形的定義、表示法,并能根據定義判斷兩個三角形是否相似.
2.能根據相似比進行計 算.
(二)能力訓練要求
1.能根據定義判斷兩個三角形是否相似,訓練 學生的判斷能力.
2.能根據相似比求長度和角度,培養學生的運用能力.
(三)情感與價值觀要求
通過與相似多邊形有關概念的類比,滲透類比的教學思想,并領會特殊與一般的關系.
●教學重點 相似三角形的定義及運用.
●教學難點 根據定義求線段長或角的度數.
●教學過程
Ⅰ.創設問題情境,引入新課
今天, 我們就來研究相似三角形.
Ⅱ.新課講解
1.相似三角形的定義及記法
三角對應相等,三邊 對應成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF
其中對應頂點要寫在對應位置,如A與D,B與E,C與F相對應.AB∶DE等于相似比.
2.想一想
如果△ABC∽△DEF,那么哪些角是對應角?哪些邊是對應邊?對應 角 有什么關系?對應邊呢?
所以 D、E、F. .
3.議一議,學生討論
(1)兩個全等三角形一定相似嗎?為什么?
(2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?
(3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?
結論:兩 個全等三角形一定相似.
兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.
4.例題
例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實際長度.
例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,
ACB=40,求(1)AED和ADE的度數。(2)DE的長.
5.想一想
在例2的條件下,圖中有哪些線段成比例?
Ⅲ.課堂練習 P129
Ⅳ.課時小結
相似三角形的 判定方法定義法.
Ⅴ.課后作業
八年級數學教案13
11.1與三角形有關的線段
11.1.1三角形的邊
1.理解三角形的概念,認識三角形的頂點、邊、角,會數三角形的個數.(重點)
2.能利用三角形的三邊關系判斷三條線段能否構成三角形.(重點)
3.三角形在實際生活中的應用.(難點)
一、情境導入
出示金字塔、戰機、大橋等圖片,讓學生感受生活中的三角形,體會生活中處處有數學.
教師利用多媒體演示三角形的形成過程,讓學生觀察.
問:你能不能給三角形下一個完整的定義?
二、合作探究
探究點一:三角形的概念
圖中的銳角三角形有( )
A.2個
B.3個
C.4個
D.5個
解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數有2+1=3(個).故選B.
方法總結:數三角形的個數,可以按照數線段條數的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.
探究點二:三角形的三邊關系
【類型一】判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.
方法總結:判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.
【類型二】判斷三角形邊的取值范圍
一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.
方法總結:判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結合不等式的知識進行解決.
【類型三】等腰三角形的三邊關系
已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.
解析:先根據等腰三角形兩腰相等的性質可得出第三邊長的兩種情況,再根據兩邊和大于第三邊來判斷能否構成三角形,從而求解.
解:根據題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構成三角形,應舍去;4+9>9,故4,9,9能構成三角形,∴它的周長是4+9+9=22.
方法總結:在求三角形的邊長時,要注意利用三角形的三邊關系驗證所求出的邊長能否組成三角形.
【類型四】三角形三邊關系與絕對值的綜合
若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.
解:根據三角形的三邊關系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.
三、板書設計
三角形的邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發學生探究的欲望,圍繞這個問題讓學生自己動手操作,發現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既提高了學生學習的興趣,又增強了學生的動手能力.
八年級數學教案14
教材分析
因式分解是代數式的一種重要恒等變形。《數學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數運算中的重要作用。本章教材是在學生學習了整式運算的基礎上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯系。分解因式的變形不僅體現了一種“化歸”的思想,而且也是解決后續—分式的化簡、解方程等—恒等變形的基礎,為數學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現在使學生接受對立統一的觀點,培養學生善于觀察、善于分析、正確預見、解決問題的能力。
學情分析
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
教學目標
1、在分解因式的過程中體會整式乘法與因式分解之間的聯系。
2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發展觀察、歸納、類比、等能力,發展有條理地思考及語言表達能力。
3、能運用提公因式法、公式法進行綜合運用。
4、通過活動4,能將高偶指數冪轉化為2次指數冪,培養學生的化歸思想。
教學重點和難點
重點:靈活運用平方差公式進行分解因式。
難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
八年級數學教案15
教學目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學重點:
分式通分的理解和掌握。
教學難點:
分式通分中最簡公分母的確定。
教學工具:
投影儀
教學方法:
啟發式、討論式
教學過程:
(一)引入
(1)如何計算:
由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據:分式的基本性質.
3.通分的關鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據分式的基本性質,分別對原來的各分式的分子和分母乘一個適當的整式,使各分式的分母都化為通分如下:xxx
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1通分:xxx
分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。
解:∵最簡公分母是12xy2,
小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.
解:∵最簡公分母是10a2b2c2,
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數的最小公倍數;(2)凡出現的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數最大的。取這些因式的積就是最簡公分母。