2022湘教版七年級上冊數學教案
作為一名老師,通常需要準備好一份教案,教案是備課向課堂教學轉化的關節點。那么問題來了,教案應該怎么寫?下面是小編為大家整理的2022湘教版七年級上冊數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
2022湘教版七年級上冊數學教案1
一、基本情況分析
1、學生情況分析:
本學期我繼續承擔七(1)(2)兩班的數學教學,兩班學生進行了一個學期的學習,雖然期末考試成績可以,但是發現兩班學生尖子生少,中等生較多,差生較多,上課很多學生不認真,學習態度、學習習慣不是很好,學生整體基礎參差不齊,沒有養成良好的學習習慣,對多數學生來說,簡單的基礎知識還不能有效掌握,成績稍差。學生的邏輯推理、邏輯思維能力,計算能力要有待加強,還要提升整體成績,適時補充課外知識,拓展學生的知識面,抽出一定的時間強化幾何訓練,培養學生良好的學習習慣。全面提升學生的數學素質。
2、教材分析:
第五章、相交線與平行線:本章主要在第四章“圖形認識初步”的基礎上,探索在同一平面內兩條直線的位置關系:①、相交②、平行。本章重點:垂線的概念和平行線的判定與性質。本章難點:證明的思路、步驟、格式,以及平行線性質與判定的應用。
第六章、實數:了解算術平方根、平方根、立方根的概念,會用根號表示平方根與立方根.會求一個數的平方根與立方根.2.了解無理數、實數的概念,實數與數軸一一對應的關系,能估計無理數的大小,能進行實數的計算.本章重點:平方根、立方根的概念,會用根號表示平方根與立方根.會求一個數的平方根與立方根.本章難點:實數的概念,實數與數軸一一對應的關系
第七章、平面直角坐標系:本章主要內容是平面直角坐標系及其簡單的應用。有序實數對與平面直角坐標系的點一一對應的關系。本章重點:平面直角坐標系的理解與建立及點的坐標的確定。本章難點:平面直角坐標系中坐標及點的位置的確定。
第八章、二元一次方程組:本章主要學習二元一次議程(組)及其解的概念和解法與應用。本章重點:二元一次方程組的解法及實際應用。本章難點:列二元一次方程組解決實際問題。
第九章、不等式與不等式組:本章主要內容是一元一次不等式(組)的解法及簡單應用。本章重點:不等式的基本性質與一元一次不等式(組)的解法與簡單應用。本章難點:不等式基本性質的理解與應用、列一元一次不等式(組)解決簡單的實際問題。
第十章、數據的收集、整理與描述:本章主要學習收集、整理和分析數據,并根據數據對調查對象作出正確的描述。本章重點:調查的意義、特點及分類,利用扇形圖、頻數分布直方圖和頻數拆線圖描述數據。本章難點:繪制數據統計圖及如何利用各種統計圖對調查對象作出正確的描述。
二、教學目標和要求
(一)知識與技能
1、獲得數學中的基本理論、概念、原理和規律等方面的知識,了解并關注這些知識在生產、生活和社會發展中的應用。
2、學會將實踐生活中遇到的實際問題轉化為數學問題,從而通過數學問題解決實際問題。體驗幾何定理的探究及其推理過程并學會在實際問題進行應用。
3、初步具有數學研究操作的基本技能,一定的科學探究和實踐能力,養成良好的科學思維習慣。
(二)過程與方法
1、采用思考、類比、探究、歸納、得出結論的方法進行教學;
2、發揮學生的主體作用,作好探究性活動;
3、密切聯系實際,激發學生的學習的積極性,培養學生的類比、歸納的能力.
(三)情感態度與價值觀
1、理解人與自然、社會的密切關系,和諧發展的主義,提高環境保護意識。
2、逐步形成數學的基本觀點和科學態度,為確立辯證唯物主義世界觀奠定必在的基礎。
三、提高教學質量的主要措施
1.本學期教學工作重點仍然是加強基礎知識的教學和基本技能的訓練,在此基礎上努力培養學生的分析問題和解決問題的能力。所以要抓好課前備課,這就要求我要認真研究教材,把握每節課的教學重點和難點,課堂上注重教學方法,努力讓不同的學生都學到有用的數學。
2.依據課程標準、教材要求和學生實際,設計出突出重點,突破難點,解決關鍵的整體優化教學方法。教學方法的運用要切合學生的實際,要有利于培養學生的良好學習習慣,有利于調動不同層次的學生的學習積極性,有利于培養學生的自學能力、思維能力和解決問題的能力。采取多種教學方法,如多讓學生動手操作,多設問,多啟發,多觀察等,增加學習主動性和學習興趣,體現學生的主體性。教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。這樣通過多種教學方法,充分調動學生的學習積極性,使學生形成主動學習的意識,教學中通過鼓勵性的語言激勵學生,使水同層次的學生都能得到鼓勵,以此增強他們的學習信心。
3.根據學生的不同學習狀況,給不同的學生布置不同的作業,對于學習比較的學生,給他們留一些與課堂教學內容相關的基礎性的作業,檢驗他們對當堂教學內容的掌握情況;對于學習成績比較好的學生,留一些綜合運用或拓展能力方面的作業,檢查他們對知識的'靈活運用和綜合運用情況。
4.利用課堂教學培養學生養成良好的學習習慣。要求學生課前自學,通過預習“我”知道了什么,還有什么不知道或還有什么我看不懂,在書上做出記號。以便上課時重點聽講。課堂上,要求學生養成良好的聽課習慣:課前做好上課的準備,聽課時要集中精神,專心聽講,積極思考問題,認真回答問題,不懂的及時提出來。要求課后養成復習的習慣,每天都要把所學的知識進行復習,可在頭腦中回顧當天所學知識,對于忘掉的或回想不起來的,可翻書重新記憶。另外,隔段時間還要把前面所學的知識再行回顧,以免時間長了忘記了。要求學生每天認真完成作業,作業要書寫工整,解題規范,杜絕抄襲現象,使學生養成良好的做作業習慣。
5.關注待進生,不歧視待進生,尊重、關心、愛護他們,使他們感到老師和同學對他們的關心。設置一些簡單的問題,由他們回答,增強他們的自信心。利用中午休息時間或課外活動時間為他們輔導,盡量使他們跟上教學進度。另外,對他們要有耐心,對于他們提出的問題,耐心解答。
6.培優補差。對于中上等生,利用課后閱讀材料和課外資料豐富他們的頭腦,增加他們的知識面,通過專題訓練,提高他們的綜合分析問題的能力和解決問題的能力。鼓勵他們利用課余時間通過課外資料或上網學習等方式拓寬他們知識面和視野,不懂就問,養成勤學好問的習慣,以提高他們的各方面的能力。對于待進生多關心和幫助,在課堂上多提問他們一些簡單的問題,多鼓勵他們,以增強他們的信心。
四、教學進度表(略)
2022湘教版七年級上冊數學教案2
一、教學目標
1、知識與技能(1)、借助數軸,初步理解絕對值的概念,能求一個數的絕對值,會利用絕對值比較兩個
負數的大小。 (2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。 2、過程與方法目標:(1)、通過運用“| |”來表示一個數的絕對值,培養學生的數感和符號感,達到發展學
生抽象思維的目的(2)、通過探索求一個數絕對值的方法和兩個負數比較大小方法的過程,讓學生學會通過
觀察,發現規律、總結方法,發展學生的實踐能力,培養創新意識; (3)、通過對“做一做”“議一議” “試一試”的交流和討論,培養學生有條理地用語言
表達解決問題的方法;通過用絕對值或數軸對兩個負數大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態度與價值觀:
借助數軸解決數學問題,有意識地形成“腦中有圖,心中有數”的數形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養學生積極參與數學活動,并在數學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發展學生清晰地闡述自己觀點的能力以及培養學生合作探索、合作交流、合作學習的新型學習方式。
二、教學重點和難點
理解絕對值的概念;求一個數的絕對值;比較兩個負數的大小。
三、教學過程:
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘) 2.在組長的組織下進行討論、交流。(約5分鐘) 3、小組分任務展示。(約25分鐘) 4、達標檢測。(約5分鐘) 5、總結(約5分鐘)
四、小組對學案進行分任務展示
(一)、溫故知新:
前面我們已經學習了數軸和數軸的三要素,請同學們回想一下什么叫數軸?數軸的三要素什么?
(二)小組合作交流,探究新知
1、觀察下圖,回答問題: (五組完成)
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數軸上,一個數所對應的點與原點的距離叫做這個數的。一個數a的絕對值記作:.
4的絕對值記作,它表示在上與的距離,所以| 4|= 。
2、做一做:
(1)、求下列各數的絕對值:(四組完成) -1.5,0,-7,2 (2)、求下列各組數的絕對值:(一組完成)
(1)4,-4; (2) 0.8,-0.8;
從上面的結果你發現了什么?
3、議一議:(八組完成)
(1)|+2|=,
1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;
你能從中發現什么規律?
小結:正數的絕對值是它,負數的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)
若字母a表示一個有理數,你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數的絕對值與這個數的關系。)
5:做一做:(三組完成)
1、( 1 )在數軸上表示下列各數,并比較它們的大。
- 3,- 1
( 2 )求出(1)中各數的絕對值,并比較它們的大小
( 3 )你發現了什么?
2、比較下列每組數的大小。
(1) -1和– 5;(五組完成) (2) ?
(3) -8和-3(七組完成)
5和- 2.7(六組完成) 6
五、達標檢測:
1:填空:
絕對值是10的數有( )
|+15|=( ) |–4|=( )
| 0 |=( ) | 4 |=( ) 2:判斷(1)、絕對值最小的數是0。( ) (2)、一個數的絕對值一定是正數。( ) (3)、一個數的絕對值不可能是負數。( )
(4)、互為相反數的兩個數,它們的絕對值一定相等。( ) (5)、一個數的絕對值越大,表示它的點在數軸上離原點越近。( )
六、總結:
1絕對值:在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值.
2.絕對值的性質:正數的絕對值是它本身;
負數的絕對值是它的相反數; 0的絕對值是0.
因為正數可用a>0表示,負數可用a<0表示,所以上述三條可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
3、會利用絕對值比較兩個負數的大。簝蓚負數比較大小,絕對值大的反而小.
七、布置作業
P50頁,知識技能第1,2題.
2022湘教版七年級上冊數學教案3
●教學內容
七年級上冊課本11----12頁1.2.4絕對值
●教學目標
1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。
2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。
●教學準備
多媒體課件
●教學過程
一、創設問題情境
1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作-__________,B處記作__________。
以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩點又有什么特征?(從形和數兩個角度去感受絕對值)。
3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念-———絕對值。
二、建立數學模型
1、絕對值的概念
(借助于數軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點的關系②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用+5表示的話,那么下降了5度,就用-5表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數的絕對值
-1.6 , , 0, -10, +10
2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)
特點:1、一個正數的絕對值是它本身
2、一個負數的絕對值是它的相反數
3、零的絕對值是零
4、互為相反數的兩個數的絕對值相等
3.出示題目
(1) -3的符號是_______,絕對值是______;
(2) +3的符號是_______,絕對值是______;
(3) -6.5的符號是_______,絕對值是______;
(4) +6.5的符號是_______,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成。現在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎?
5、練習3:回答下列問題
、僖粋數的絕對值是它本身,這個數是什么數?
、谝粋數的絕對值是它的相反數,這個數是什么數?
、垡粋數的絕對值一定是正數嗎?
④一個數的絕對值不可能是負數,對嗎?
、萁^對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數
(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)
分析:
、購臄底稚戏治
∵|+4|=4,|-4|=4 ∴絕對值等于4的數是+4和-4畫一個數軸(如下圖)
、趶膸缀我饬x上分析,畫一個數軸(如下圖)
因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數是+4和-4.
6、練習:做書上12頁課內練習1、2兩題。
四、歸納小結
1、本節課我們學習了什么知識?
2、你覺得本節課有什么收獲?
3、由學生自行總結在自主探究,合作學習中的體會。
五、課后作業
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業題。
2022湘教版七年級上冊數學教案4
教學目標:
1.掌握數軸三要素,能正確畫出數軸.
2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.
教學重點:數軸的概念.
教學難點:從直觀認識到理性認識,從而建立數軸概念.
教與學互動設計:
(一)創設情境,導入新課
課件展示課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節要學的內容——數軸.
【點撥】(1)引導學生學會畫數軸.
第一步:畫直線,定原點.
第二步:規定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當的長度為單位長度(據情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.
對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數軸:
規定了原點、正方向和單位長度的直線叫數軸.
做一做學生自己練習畫出數軸.
試一試你能利用你自己畫的數軸上的點來表示數4,1.5,-3,-2,0嗎?
討論若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結整數在數軸上都能找到點表示嗎?分數呢?
可見,所有的都可以用數軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】下列所畫數軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
、贁递S上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有( )
A.1個B.2個C.3個D.4個
【例4】在數軸上表示-2和1,并根據數軸指出所有大于-2而小于1的整數.
【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有( )
A.1998個或1999個B.1999個或20xx個
C.20xx個或20xx個D.20xx個或20xx個
(四)總結反思,拓展升華
數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.
(五)課堂跟蹤反饋
夯實基礎
1.規定了、 、的直線叫做數軸,所有的有理數都可從用上的點來表示.
2.P從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數是.
3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是( )
A.7 B.-3
C.7或-3 D.不能確定
4.在數軸上,原點及原點左邊的點所表示的數是( )
A.正數B.負數
C.不是負數D.不是正數
5.數軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數軸,并把下列數表示在數軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數軸上,最多能覆蓋個整數點.
9.下列四個數中,在-2到0之間的數是( )
A.-1 B.1 C.-3 D.3
2022湘教版七年級上冊數學教案5
一、學習與導學目標:
知識與技能:會求出一個數的絕對值,能利用數軸及絕對值的知識,比較兩個有理數的大小;
過程與方法:經歷絕對值概念的形成,初步體會數形結合的思想方法,豐富解決問題的策略;
情感態度:通過創設情境,初步感悟學習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
A、創設情境(幻燈片或掛圖)
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區別,可規定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……
2、在討論數軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
B、學習概念:
1、我們把在數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數軸上表示數-6的點和表示數6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數的兩個數的絕對值相同)
2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱= ;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱= ;
(3)︱0︱= 。(幻燈片)
思考:你能從中發現什么規律?引導學生得出:(幻燈片)
性質:一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
零的絕對值是零。
如果用字母a表示有理數,上述性質可表述為:
當a是正數時,︱a︱=a;
當a是負數時,︱a︱=-a;
當a=0時,︱a︱=0。
解答課本P19/7及P15練習,由P19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數軸,引出問題:
在引入負數以后,如何比較兩個數的大小,尤其是兩個負數的大小?
3、讓我們仍然回到實際中去看看有怎樣的啟發,引導閱讀P16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4<-3<-2<-1<0<1<2……。
因此,在數軸上你有何發現?生討論后發現:從左往右表示的數越來越大。
再找幾個量試試是否如此?這些數的絕對值的大小如何?(可利用P19/6,8為素材)
通過以上探究活動得到:正數大于0,0大于負數,正數大于負數;
兩個負數,絕對值大的反而小。
4、師生活動比較下列各對數的大小:P17例,P18練習。
5、師生小結歸納(幻燈片)
三、筆記與板書提綱:
1、幻燈片
2、師生板演練習P15/1
四、練習與拓展選題:
P19/4,5,9,10
【七年級上冊數學教案】相關文章:
七年級上冊數學教案設計06-12
人教版七年級上冊數學教案模板10-11
2022新人教版七年級上冊數學教案09-28
七年級上冊數學教案(通用15篇)06-02
初一數學教案上冊09-26
初中初二上冊數學教案01-13
8年級上冊數學教案10-11
七年級數學教案07-22