初一數學上冊的教案
作為一位無私奉獻的人民教師,編寫教案是必不可少的,教案有利于教學水平的提高,有助于教研活動的開展。教案應該怎么寫呢?以下是小編為大家整理的初一數學上冊的教案,僅供參考,希望能夠幫助到大家。
初一數學上冊的教案1
一、教學目標:
1.知識目標:
使學生理解同類項的概念和合并同類項的意義,學會合并同類項。
2.能力目標:
培養學生觀察、分析、歸納和動手解決問題的能力,初步使學生了解數學的分類思想。
3.情感目標:
借助情感因素,營造親切和諧活潑的課堂氣氛,激勵全體學生積極參與教學活動。培養他們團結協作,嚴謹求實的學習作風和鍥而不舍,勇于創新的精神。
二、教學重點、難點:
重點:同類項的概念和合并同類項的法則
難點:合并同類項
三、教學過程:
(一)情景導入:
1、觀察下面的圖片,并將這些圖片分類:
你是依據什么來進行分類的呢?
生活中,我們常常為了需要把具有相同特征的事物歸為一類。
2、對下列水果進行分類:
(二)新知探究1:
1、對下列八個單項式進行分類:
a,6_2,5,cd,-1,2_2,4a,-2cd
這些被歸為同一類的項有什么相同的特征?
2、揭示同類項的概念。
同類項:所含字母相同,并且相同字母的指數也相同的項,叫做同類項。另外,所有的常數項都是同類項。
《3.4合并同類項》同步練習
1.已知代數式2a3bn+1與-3am-2b2是同類項,則2m+3n=________.
2.若-4_ay+_2yb=-3_2y,則a+b=_______.
3.下面運算正確的是( )
A.3a+2b=5ab B.3a2b-3ba2=0
C.3_2+2_3=5_5 D.3y2-2y2=1
4.已知一個多項式與3_2+9_的和等于3_2+4_-1,則這個多項式是( )
A.-5_-1 B.5_+1
C.-13_-1 D.13_+1
《3.4合并同類項》測試
1.下列說法中,正確的是( )
A.字母相同的項是同類項
B.指數相同的項是同類項
C.次數相同的項是同類項
D.只有系數不同的項是同類項
初一數學上冊的教案2
【學習目標】
1.掌握有理數的混合運算法則,并能熟練地進行有理數的加、減、乘、除、乘方的混合運算;
2.通過計算過程的反思,獲得解決問題的經驗,體會在解決問題的過程中與他人合作的重要性;
【學習方法】
自主探究與合作交流相結合。
【學習重難點】
重點:能熟練地按照有理數的運算順序進行混合運算
難點:在正確運算的基礎上,適當地應用運算律簡化運算
【學習過程】
模塊一預習反饋
一、學習準備
1.四則(加減乘除)混合運算的順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。
2.有理數的運算定律:__________________________________________________.
3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業。
《2.11有理數的混合運算》課后作業
9.用符號“>”“<”“=”填空.
42+32________2×4×3;
(-3)2+12________2×ok3w_ads("s002");
《2.11有理數的混合運算》同步練習
5、小亮的爸爸在一家合資企業工作,月工資2500元,按規定:其中800元是免稅的,其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20__元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?
初一數學上冊的教案3
教學目標:
1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。
2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。
重點難點:
重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點:勾股定理的發現
教學過程
一、創設問題的情境,激發學生的學習熱情,導入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結果的'?在學生交流回答的基礎上教師直接發問:
3、圖1—2中,A,B,C之間的面積之間有什么關系?
學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關系?
2、圖1—4中,A,B,C之間有什么關系?
3、從圖1—1,1—2,1—3,1|—4中你發現什么?
學生討論、交流形成共識后,教師總結:
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發現直角三角形三邊長度之間的關系嗎?
在同學的交流基礎上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題
△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個題目條件不足,第三邊無法求得。
2、練習P7§1.11
六、作業
課本P7§1.12、3、4
教學目標:
1.經歷運用拼圖的方法說明勾股定理是正確的過程,在數學活動中發展學生的探究意識和合作交流的習慣。
2.掌握勾股定理和他的簡單應用
重點難點:
重點:能熟練運用拼圖的方法證明勾股定理
難點:用面積證勾股定理
教學過程
七、創設問題的情境,激發學生的學習熱情,導入課題
我們已經通過數格子的方法發現了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?
(同學們回答有這幾種可能:(1)(2))
在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。
=請同學們對上面的式子進行化簡,得到:即=
這就可以從理論上說明勾股定理存在。請同學們去用別的拼圖方法說明勾股定理。
八、講例
1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?
分析:根據題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。
解:由勾股定理得
即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:
答:飛機每個小時飛行540千米。
九、議一議
展示投影2(書中的圖1—9)
觀察上圖,應用數格子的方法判斷圖中的三角形的三邊長是否滿足
同學在議論交流形成共識之后,老師總結。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作業
1、1、課文P11§1.21、2
2、選用作業。
初一數學上冊的教案4
教學目標
1、知道有理數混合運算的運算順序,能正確進行有理數的混合運算;
2、會用計算器進行較繁雜的有理數混合運算。
教學重點
1、有理數的混合運算;
2、運用運算律進行有理數的混合運算的簡便計算。
教學難點
運用運算律進行有理數的混合運算的簡便計算。
有理數的混合運算的運算順序
也就是說,在進行含有加、減、乘、除的混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的運算,所以像這樣的有理數的混合運算,有以下運算順序:
先乘方,再乘除,最后加減。如果有括號,先進行括號內的運算。
你會根據有理數的運算順序計算上面的算式嗎?
2、8有理數的混合運算:同步練習
1、有依次排列的3個數:2,9,7,對任意相鄰的兩個數,都用右邊的數減去左邊的數,所得之差寫在這兩個數之間,可產生一個新數串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產生一個新數串:2,5,7,2,9,—11,—2,9,7,繼續依次操作下去,問:從數串2,9,7開始操作第一百次以后所產生的那個新數串的所有數之和是。
《2、8有理數的混合運算》課后訓練
1、興旺肉聯廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內溫度上升4 ℃,現有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關上庫門4小時后,肉的溫度是多少攝氏度?
初一數學上冊的教案5
教學目標:
知識與技能
1.掌握直角三角形的判別條件,并能進行簡單應用;
2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
情感態度與價值觀
敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.
教學重點
運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
教學難點
會辨析哪些問題應用哪個結論.
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學過程:
復習引入:
請學生復述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
、比绾蝸砼袛?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數都滿足a2+b2=c2嗎?
(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
、持苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數,稱為勾股數.
、蠢1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習:
⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
、戳曨}1.3
課堂小結:
、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
、矟M足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.
【初一數學上冊的教案】相關文章:
初一數學教案上冊09-26
初一數學上冊教案(精選10篇)06-29
數學上冊教案12-25
數學上冊教案12-25
正數和負數人教版數學初一上冊教案09-24
小學數學上冊教案08-26
初一數學上冊試題06-11
初一上冊的數學課件03-30
初一語文上冊教案10-26