有理數的乘法教案15篇
作為一名老師,就不得不需要編寫教案,借助教案可以讓教學工作更科學化。那么寫教案需要注意哪些問題呢?下面是小編精心整理的有理數的乘法教案,歡迎大家借鑒與參考,希望對大家有所幫助。
有理數的乘法教案1
教學目的:
1.知識與技能
體會有理數乘法的實際意義;
掌握有理數乘法的運算法則和乘法法則,靈活地運用運算律簡化運算。
2.過程與方法
經歷有理數乘法的推導過程,用分類討論的思想歸納出兩數相乘的法則,感悟中、小學數學中的乘法運算的重要區別。
通過體驗有理數的乘法運算,感悟和歸納出進行乘法運算的一般步驟。
3.情感、態度與價值觀
通過類比和分類的思想歸納乘法法則,發展舉一反三的能力。
教學重點:
應用法則正確地進行有理數乘法運算。
教學難點:
兩負數相乘,積的符號為正。
教具準備:
多媒體。
教學過程:
一、引入
前面我們已經學習了有理數的加法運算和減法運算,今天,我們開始研究有理數的乘法運算.
問題一:有理數包括哪些數?
回答:有理數包括正整數、正分數、負整數、負分數和零.
問題二:小學已經學過的乘法運算,屬于有理數中哪些數的運算?
回答:屬于正有理數和零的乘法運算.或答:屬于正整數、正分數和零的乘法運算.
計算下列各題;
以上這些題,都是對正有理數與正有理數、正有理數與零、零與零的乘法,方法與小學學過的相同,今天我們要研究的有理數的乘法運算,重點就是要解決引入負有理數之后,怎樣進行乘法運算的問題.
二、新課
我們以蝸牛爬行距離為例,為區分方向,我們規定:向左為負,向右為正,為區分時間,我們規定:現在前為負,現在后為正。
如圖,一只蝸牛沿直線l爬行,它現在的位置恰在l上的點O。
1.正數與正數相乘
問題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結果向東運動了6米.
2.負數與正數相乘
問題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應在l上點O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3.正數與負數相乘
問題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應為l上點O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4.負數與負數相乘
問題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應為l上點O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5.零與任何數相乘或任何數與零相乘
問題五:原地不動或運動了零次,結果是什么?
答:結果都是仍在原處,即結果都是零,若用式子表達:
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
綜合上述五個問題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何數與零相乘都得零.
觀察上述(1)~(4)回答:
1.積的符號與因數的符號有什么關系?
2.積的絕對值與因數的絕對值有什么關系?
答:1.若兩個因數的符號相同,則積的符號為正;若兩個因數的符號相反,則積的符號為負.2.積的絕對值等于兩個因數的絕對值的積.
由此我們可以得到:
兩數相乘,同號得正,異號得負,并把絕對值相乘.
(1)~(5)包括了兩個有理數相乘的所有情況,綜合上述各種情況,得到有理數乘法的法則:
口答:確定下列兩數積的符號:
例題:計算下列各題:
解題步驟:
1.認清題目類型.
2.根據法則確定積的符號.
3.絕對值相乘.
練習:
1.口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個數與1相乘得原數,一個數與-1相乘,得原數的相反數.
2.在表中的各個小方格里,填寫所在的橫行的第一個數與所在直列的第一個數的積:
3.計算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4.填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
-|-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____.
三、小結
(1)指導學生看書,精讀乘法法則.
(2)強調運用法則進行有理數乘法的步驟.
(3)比較有理數乘法的符號法則與有理數加法的符號法則的區別,以達到進一步鞏固有理數乘法法則的目的.
四、作業
1.計算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16).
2.計算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.計算:
4.填空:(用“>”或“<”號連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當a>0時,a____2a;
(4)當a<0時,a____2a.
板書設計
1.4有理數的乘法
法則:練習
教學設計思路
本節課是在小學已接觸到的乘法、初中剛學習過的有理數的加減法基礎上進行的。通過對實際問題的解決,引入有理數的乘法法則。在講解運動的例子時運用現代化教學手段,把圖形中的“靜”變“動”,增強了直觀性,初步培養想象能力。
教學反思
強調學生與教師一起共同參與教學活動,我們堅持把教學活動過程體現在教學中,又激發學生的思維積極性,讓學生學會分析問題和解決問題。
有理數的乘法教案2
三維目標
一、知識與技能
(1)能確定多個因數相乘時,積的符號,并能用法則進行多個因數的乘積運算。
(2)能利用計算器進行有理數的乘法運算。
二、過程與方法
經歷探索幾個不為0的數相乘,積的符號問題的過程,發展觀察、歸納驗證等能力。
三、情感態度與價值觀
培養學生主動探索,積極思考的學習興趣。
教學重、難點與關鍵
1.重點:能用法則進行多個因數的乘積運算。
2.難點:積的符號的確定。
3.關鍵:讓學生觀察實例,發現規律。
教具準備
投影儀。
四、 教學過程
1.請敘述有理數的乘法法則。
2.計算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授
1.多個有理數相乘,可以把它們按順序依次相乘。
例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我們知道計算有理數的乘法,關鍵是確定積的符號。
觀察:下列各式的積是正的還是負的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式積為負,(2)、(4)式積為正,積的符號與負因數的個數有關。
教師問:幾個不是0的數相乘,積的符號與負因數的個數之間有什么關系?
學生完成思考后,教師指出:幾個不是0的數相乘,積的符號由負因數的個數決定,與正因數的個數無關,當負因數的個數為負數時,積為負數;當負因數的個數為偶數時,積為正數。
2.多個不是0的有理數相乘,先由負因數的個數確定積的符號再求各個絕對值的積。
有理數的乘法教案3
教學目標
1。理解有理數乘法的意義,掌握有理數乘法法則中的符號法則和絕對值運算法則,并初步理解有理數乘法法則的合理性;
2。能根據有理數乘法法則熟練地進行有理數乘法運算,使學生掌握多個有理數相乘的積的符號法則;
3。三個或三個以上不等于0的有理數相乘時,能正確應用乘法交換律、結合律、分配律簡化運算過程;
4。通過有理數乘法法則及運算律在乘法運算中的運用,培養學生的運算能力;
5。本節課通過行程問題說明有理數的乘法法則的合理性,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
重點:
是否能夠熟練進行有理數的乘法運算。依據有理數的乘法法則和運算律靈活進行有理數乘法運算是進一步學習除法運算和乘方運算的基礎。有理數的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數不包含0的乘法運算中積的符號取決于因數中所含負號的個數。當負號的個數為奇數時,積的符號為負號;當負號的個數為偶數時,積的符號為正數。積的絕對值是各個因數的絕對值的積。運用乘法交換律恰當的結合因數可以簡化運算過程。
難點:
理解有理數的乘法法則。有理數的乘法法則中的“同號得正,異號得負”只是針對兩個因數相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數符號相同,積的符號是正號;兩個因數符號不同,積的符號是負號。積的絕對值是這兩個因數的絕對值的積。
(二)知識結構
(三)教法建議
1。有理數乘法法則,實際上是一種規定。行程問題是為了了解這種規定的合理性。
2。兩數相乘時,確定符號的依據是“同號得正,異號得負”。絕對值相乘也就是小學學過的算術乘法。
3。基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區別。
4。幾個數相乘,如果有一個因數為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數為0。
5。小學學過的乘法交換律、結合律、分配律對有理數乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數、0,也可以是負有理數。
6。如果因數是帶分數,一般要將它化為假分數,以便于約分。
教學設計示例
有理數的乘法(第一課時)
教學目標
1。使學生在了解有理數的乘法意義基礎上,理解有理數乘法法則,并初步理解有理數乘法法則的合理性;
2。通過有理數的乘法運算,培養學生的運算能力;
3。通過教材給出的行程問題,認識數學來源于實踐并反作用于實踐。
教學重點和難點
重點:依據有理數的乘法法則,熟練進行有理數的乘法運算;
難點:有理數乘法法則的理解。
課堂教學過程設計
一、從學生原有認知結構提出問題
1。計算(—2)+(—2)+(—2)。
2。有理數包括哪些數?小學學習四則運算是在有理數的什么范圍中進行的?(非負數)
3。有理數加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)[
4。根據有理數加減運算中引出的新問題主要是負數加減,運算的關鍵是確定符號問題,你能不能猜出在有理數乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數問題,符號的確定)
二、師生共同研究有理數乘法法則
問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引導學生比較①,②得出:
把一個因數換成它的相反數,所得的積是原來的積的相反數。
這是一條很重要的結論,應用此結論,3×(—2)=?(—3)×(—2)=?(學生答)
把3×(—2)和①式對比,這里把一個因數“2”換成了它的相反數“—2”,所得的積應是原來的積“6”的相反數“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式對比,這里把一個因數“2”換成了它的相反數“—2”,所得的積應是原來的積“—6”的相反數“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
綜合上面各種情況,引導學生自己歸納出有理數乘法的法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘;
任何數同0相乘,都得0。
繼而教師強調指出:
“同號得正”中正數乘以正數得正數就是小學學習的乘法,有理數中特別注意“負負得正”和“異號得負”。
用有理數乘法法則與小學學習的乘法相比,由于介入了負數,使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結為小學的乘法了。
因此,在進行有理數乘法時,需要時時強調:先定符號后定值。
三、運用舉例,變式練習
例某一物體溫度每小時上升a度,現在溫度是0度。
(1)t小時后溫度是多少?
(2)當a,t分別是下列各數時的結果:
①a=3,t=2;②a=—3,t=2;
②a=3,t=—2;④a=—3,t=—2;
教師引導學生檢驗一下(2)中各結果是否合乎實際。
課堂練習
1。口答:
(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
(7)(—6)×0;(8)0×(—6);
2。口答:
(1)1×(—5);(2)(—1)×(—5);(3)+(—5);
(4)—(—5);(5)1×a;(6)(—1)×a。
這一組題做完后讓學生自己總結:一個數乘以1都等于它本身;一個數乘以—1都等于它的相反數。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時教師強調指出,a可以是正數,也可以是負數或0;—a未必是負數,也可以是正數或0。
3。填空:
(1)1×(—6)=______;(2)1+(—6)=_______;
(3)(—1)×6=________;(4)(—1)+6=______;
(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判斷下列方程的解是正數還是負數或0:
(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小結
今天主要學習了有理數乘法法則,大家要牢記,兩個負數相乘得正數,簡單地說:“負負得正”。
五、作業
1。計算:
(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”號連接):
(1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
(3)如果a>0時,那么a____________2a;
(4)如果a<0時,那么a__________2a。
探究活動
問題:桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經過若干次翻轉,把它們翻成杯口全部朝下?
答案:“±1”將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下。道理很簡單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成—1?”考慮這7個數的乘積,由于每次都改變4個數的符號,所以它們的乘積永遠不變(為+1)。而7個杯口全部朝下時,7個數的乘積等于—1,這是不可能的。
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言。
有理數的乘法教案4
教學目標
1理解有理數乘法的意義,掌握有理數乘法法則中的符號法則和絕對值運算法則,并初步理解有理數乘法法則的合理性;
2能根據有理數乘法法則熟練地進行有理數乘法運算,使學生掌握多個有理數相乘的積的符號法則;
3三個或三個以上不等于0的有理數相乘時,能正確應用乘法交換律、結合律、分配律簡化運算過程;
4通過有理數乘法法則及運算律在乘法運算中的運用,培養學生的運算能力;
5本節課通過行程問題說明有理數的乘法法則的合理性,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
重點:
是否能夠熟練進行有理數的乘法運算。依據有理數的乘法法則和運算律靈活進行有理數乘法運算是進一步學習除法運算和乘方運算的基礎。有理數的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數不包含0的乘法運算中積的符號取決于因數中所含負號的個數。當負號的個數為奇數時,積的符號為負號;當負號的個數為偶數時,積的符號為正數。積的絕對值是各個因數的絕對值的積。運用乘法交換律恰當的結合因數可以簡化運算過程。
難點:
理解有理數的乘法法則。有理數的乘法法則中的同號得正,異號得負只是針對兩個因數相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數符號相同,積的符號是正號;兩個因數符號不同,積的符號是負號。積的絕對值是這兩個因數的絕對值的積。
(二)知識結構
(三)教法建議
1有理數乘法法則,實際上是一種規定。行程問題是為了了解這種規定的合理性。
2兩數相乘時,確定符號的 依據是同號得正,異號得負。絕對值相乘也就是小學學過的算術乘法。
3基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區別。
4幾個數相乘,如果有一個因數為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數為0。
5小學學過的乘法交換律、結合律、分配律對有理數乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數、0,也可以是負有理數。
6如果因數是帶分數,一般要將它化為假分數,以便于約分。
教學設計示例
有理數的乘法(第一課時)
教學目標
1使學生在了解有理數的乘法意義基礎上,理解有理數乘法法則,并初步理解有理數乘法法則的合理性;
2通過有理數的乘法運算,培養學生的運算能力;
3通過教材給出的行程問題,認識數學來源于實踐并反作用于實踐。
教學重點和難點
重點:依據有理數的乘法法則,熟練進行有理數的乘法運算;
難點:有理數乘法法則的理解。
課堂教學過程設計
一、從學生原有認知結構提出問題
1計算(—2)+(—2)+(—2)。
2有理數包括哪些數?小學學習四則運算是在有理數的什么范圍中進行的?(非負數)
3有理數加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)[
4根據有理數加減運算中引出的新問題 主要是負數加減,運算的關鍵是確定符號問題,你能不能猜出在有 理數乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數問題,符號的確定)
二、師生共同研究有理數乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:32=6(厘米) ①
答:上升了6厘米。
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—32=—6(厘米) ②
答:上升—6厘米(即下降6厘米)。
引導學生 比較①,②得出:
把一個因數換成它的相反數,所得的積是原來的積的相反數。
這是一條很重要的結論,應用此結 論 ,3(—2)=?(—3)(—2)=?(學生答)
把3(—2)和①式對比,這里把一個因數2換成了它的相反數—2,所得的積應是原來的積6的相反數—6,即3(—2)=—6
把(—3)(—2)和②式對比,這里把一個因數2換成了它的相反數—2,所得的積應是原來的積—6的相反數6,即(—3)(—2)=6
此外,(—3)0=0。
綜合上面各種情況,引導學生自己歸納出有理數乘法的法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘;
任何數同0相乘,都得0。
繼而教師強調指出:
同號得正中正數乘以正數得正數就是小學學習的乘法,有理數中特別注意負負得正和異號得負。
用有理數乘法法則與小學學習的乘法相比,由于介入了負數,使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:同號得正,異號得負,符號一旦確定,就歸結為小學的乘法了。
因此,在進行有理數乘法時,需要時時強調:先定符號后定值。
三、運用舉例,變式練習
例 某一物體溫度每小時上升a度,現在溫度是0度。
(1)t小時后溫度是多少?
(2)當a,t分別是下列各數時的結果:
①a=3,t=2;②a =—3,t=2;
②a=3,t=—2;④a=—3,t=—2;
教師引導學生檢驗一下(2)中各結果是否合乎實際。
課堂練習
1口答:
(1)6 (2)(—6) (3)(—6)
(4)(—6) (5)(—6) (6) 6
(7)(—6) (8)0
2 口答:
(1)1 (2)(—1) (3)+(—5);
(4)—(—5); (5)1 (6)(—1)a。
這一組題做完后讓學生自己總結:一個數乘以1都等于它本身;一個數乘以—1都等于它的相反數。+(—5)可以看成是1(—5),—(—5)可以看成是(—1)(—5)。同時教師強調指出,a可以是正數,也可以是負數或0;—a未必是負 數,也可以是正數或0。
3填空:
(1)1(—6)=______;(2)1+(—6)=____ ___;
(3)(—1)6=________;(4)(—1)+6=______;
(5)(—1)(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7||—3|=_______;(10)(—7)(—3)=______。
4判斷下列方程的解是正數還是負數或0:
(1)4x=—16; (2)—3x=18; (3)—9x=—36; (4)—5x=0。
四、小結
今天主要學習了有理數乘法 法則,大家要牢記,兩個負數相乘得正數,簡單地說:負負得正。
五、作業
1計算:
(1)(—16) (2)(—9)(—14); (3)(—36)
(4)100(—0。001); (5) —48(—125); (6)—45(—0。32)。
2填空(用或號連接):
(1)如果 a0,b0,那么 ab _______ _0;
(2)如果 a0,b0,那么ab _______0;
(3)如果a0時,那么a ____________2a;
( 4)如果a0時,那么a __________2a。
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經過若干次翻轉,把它們翻成杯口全部朝下?
答案: 1將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下。道理很簡單,用+1表示杯口朝上,—1表示杯口朝下,問題就變成:把7個+1每次改變其中4個的符號,若干次后能否都變成—1 ?考慮這7個數的乘積,由于每次都改變4個數的符號,所以它們的乘積永遠不變(為+1)。而7個杯口全部朝下時,7個數的乘積等于—1,這是不可能的。
有理數的乘法教案5
【教學目標】
1、鞏固有理數乘法法則;
2、探索多個有理數相乘時,積的符號的確定方法、
【對話探索設計】
探索1
1、下列各式的積為什么是負的?
(1)—2345
(2)2(—3)4(—5)6789(—10)、
2、下列各式的積為什么是正的?
(1)(—2)(—3)456
(2)—2345(—6)78(—9)(—10)、
觀察1
P38、 觀察
思考歸納
幾個不是0的數相乘,積的符號與負因數的個數之間有什么關系?
(見P38、思考)
與兩個有理數相乘一樣,幾個不等于0的有理數相乘,要先確定積的符號,再確定積的絕對值
例題學習
P39、例3
觀察2
P39、 觀察
練習
P39、練習
作業
P46、7、(1),(2)(3),8,9,10,11、
補充練習
1、(1)若a = 3,a與2a哪個大?若 a= 0 呢? 又若 a=—3呢?
(2)a與2a哪個大?
(3)判斷:9a一定大于2a;
(4)判斷:9a一定不小于2a、
(5)判斷:9a有可能小于2a、
2、幾個數相乘,積的符號由負因數的個數決定 這句話錯在哪里?
3、若ab,則acbc嗎?為什么?請舉例說明、
4、若mn=0,那么一定有( )
(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一個為0、
5、利用乘法法則完成下表,你能發現什么規律?
3210—1—2—3
39630—3
2622
1321
—1
—2
—3
6、(1)經過調查發現,若甲商店某種彩電降價的百分率記為a,則乙商店這種彩電降價的百分率可記為—a,你認為哪家商店該彩電的降價的百分率大?為什么?
(2)經過調查發現,若甲商店某種彩電降價的百分率記為a,則乙商店這種彩電降價的百分率可記為1、2a,你認為哪家商店該彩電的降價的百分率大?為什么?
有理數的乘法教案6
教學目標
1.知識與技能
①經歷探索有理數乘法法則的過程,發展觀察、歸納、猜想、驗證的能力.
②會進行有理數的乘法運算.
2.過程與方法
通過對問題的變式探索,培養觀察、分析、抽象的能力.
3.情感、態度與價值觀
通過觀察、歸納、類比、推斷獲得數學猜想,體驗數學活動中的探索性和創造性.
教學重點難點
重點:能按有理數乘法法則進行有理數乘法運算.
難點:含有負因數的乘法.
教與學互動設計
(一)創設情境,導入新課
做一做 出示一組算式,請同學們用計算器計算并找出它們的規律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想 你們發現積的符號與因數的符號之間的關系如何?
學生活動:計算、討論
總結 一正一負的兩個數的乘積為負;兩正或兩負的乘積是正數.
兩數相乘,同號得正,異號得負.
想一想 兩數相乘,積的絕對值是怎么得到的呢?
學生:是兩因數的絕對值的積.
有理數的乘法教案7
一、知識與能力
掌握有理數乘法以及乘法運算律,熟練進行有理數乘除運算,發展觀察,歸納等方面的能力,用相關知識解決實際問題的能力
二、過程與方法
經歷歸納,總結有理數乘法,除法法則及乘法運算律的過程,會觀察,選擇適當的、較簡便的方法進行有理數乘除運算
三、情感、態度、價值觀
培養學生學習的自信心,上進心,通過用乘除運算解決簡單的實際問題,讓學生明確學習教學的目的是學以致用,從而培養學生的主動性、積極性
四、教學重難點
一、重點:熟練進行有理數的`乘除運算
二、難點:正確進行有理數的乘除運算
預習導學
通過看課本§1.4的內容,歸納有理數的乘法法則以及乘法運算律
五、教學過程
一、創設情景,談話導入
我們已經學習了有理數的乘除法,同學們歸納,總結一下有理數的乘法法則以及乘法運算律
二、精講點撥質疑問難
根據預習內容,同學們回答以下問題:
1.有理數的乘法法則:
(1)同號兩數相乘___________________________________
(2)異號兩數相乘_____________________________________
(3)0與任何自然數相乘,得____
2.有理數的乘法運算律:
(1)乘法交換律:ab=_________
(2)乘法結合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理數的除法法則:
除以一個不等于0的數,等于乘這個數的__________
比較有理數的乘法,除法法則,發現_________可能轉化為__________
三、課堂活動強化訓練
某公司去年1~3月份平均每月虧損1.5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1.7萬元,11~12月份平均每月虧損2.3萬元,這個公司去年總的盈虧情況如何?
注:學生分組討論練習,教師在巡視過程中,引導、輔導部分基礎較差的學生后,各小組進行交流,總結
四、延伸拓展,鞏固內化
例2.(1)若ab=1,則a、b的關系為()
(2)下列說法中正確的個數為( )
0除以任何數都得0
②如果=-
1,那么a是非負數若若⑤(c≠0)⑥()⑦1的倒數等于本身
A 1個B 2個C 3個D 4個
(3)兩個不為零的有理數相除,如果交換被除數與除數的關系,它們的商不變( )
A兩數相等B兩數互為相反數
C兩數互為倒數D兩數相等或互為相反數
有理數的乘法教案8
三維目標
一、知識與技能
經歷探索有理數乘法法則過程,掌握有理數的乘法法則,能用法則進行有理數的乘法。
二、過程與方法
經歷探索有理數乘法法則的過程,發展學生歸納、猜想、驗證等能力。
三、情感態度與價值觀
培養學生積極探索精神,感受數學與實際生活的聯系。
教學重、難點與關鍵
1.重點:應用法則正確地進行有理數乘法運算。
2.難點:兩負數相乘,積的符號為正與兩負數相加和的符號為負號容易混淆。
3.關鍵:積的符號的確定。
教具準備
投影儀。
四、教學過程
一、引入新課
在小學,我們學習了正有理數有零的乘法運算,引入負數后,怎樣進行有理數的乘法運算呢?
五、新授
課本第28頁圖1.4-1,一只蝸牛沿直線L爬行,它現在的位置恰在L上的點O.
(1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4個問題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區分方向,我們規定:向左為負,向右為正;為區分時間,我們規定:現在前為負,現在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。
有理數的乘法教案9
一、 教學目標
1、 知識與技能目標
掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。
2、 能力與過程目標
經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數乘法法則正確進行計算。
難點:有理數乘法法則的探索過程,符號法則及對法則的理解。
三、 教學過程
1、 創設問題情景,激發學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
(1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規定向東的方向為正方向,向西的方向為負方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結果:向 運動 米
2 ×3=
② -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
(-2) ×(-3)=
(2)學生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規律?
(+)×(+)=( ) 同號得
(-)×(+)=( ) 異號得
(+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
②積的絕對值等于 。
③任何數與零相乘,積仍為 。
(3)師生共同用文字敘述有理數乘法法則。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。
(3)學生做練習,教師評析。
(4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。
有理數的乘法教案10
一、學習目標:
1. 熟練掌握有理數的乘法法 則
2. 會運用乘法運算率簡化乘法運算.
3. 了解互為倒數的意義,并會求一個非零有理數的倒數
二、學習重點:探索有 理數乘法運算律
學習難點:運用乘法運算律簡化計算
三、學習過程:
(一)、情境引入:
1、復習有理數的乘法法則(兩個因數、兩個以上的因數),并舉例說明。
2、在含有負數的乘法運算中,乘法交換律,結合律和分配律還成立嗎?
觀察 下列各有理數乘法,從中可得到怎樣的結論?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、請再舉幾組數試一試,看上面所得的結論是否成立?
(二)、新課講解:
有理數乘法運算律
交換律 ab =ba
結合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.計算:
(1)8(- )(-0.125) (2)
(3)( )(-36) (4)
例2.計算
(1)8 (2)(4)( ) (3)( )( )
觀察例2中的三個運算, 兩個因數有什么 特點?它們的乘積呢?你能夠得到什么結論?
(三)、鞏固練習:
1.運用運算律填空.
(1)-2-3=-3(_____).
(2)[-32](-4)=-3[(______)(______)].
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2.選擇題
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同號 D a,b異號
(2)利用分配律計算 時,正確的方案可以是 ( )
A B
C D
3.運用運算律計算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-18.36) (6)(- )0.125(-2 )
(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)
四、課堂小結:
通過本節課你學到了哪些知識?你 達成學習目標了嗎?
五、作業布置:
課本第42頁習題2.5 第3題
數學評價手冊
六 、學后記/教后記
有理數的乘法教案11
有理數的乘法教案
學習目標:
1、理解有理數的運算法則;能根據有理數乘法運算法則進行有理的簡單運算
2、經歷探索有理數乘法法則過程,發展觀察、歸納、猜想、驗證能力。
3、培養語言表達能力。調動學習積極性,培養學習數學的興趣。
學習重點:有理數乘法
學習難點:法則推導
教學方法:引導、探究、歸納與練習相結合
教學過程
一、學前準備
計算:
(1)(一2)十(一2)
(2)(一2)十(一2)十(一2)
(3)(一2)十(一2)十(一2)十(一2)
(4)(一2)十(一2)十(一2)十(一2)十(一2)
猜想下列各式的值:
(一2)×2(一2)×3
(一2)×4(一2)×5
二、探究新知
1、自學有理數乘法中不同的形式,完成教科書中29~30頁的填空。
2、觀察以上各式,結合對問題的研究,請同學們回答:
(1)正數乘以正數積為__________數,(2)正數乘以負數積為__________數,
(3)負數乘以正數積為__________數,(4)負數乘以負數積為__________數。
提出問題:一個數和零相乘如何解釋呢?
《1.4.1有理數的乘法》同步練習含解析
1、若有理數a,b滿足a+b<0,ab<0,則()
A、a,b都是正數
B、a,b都是負數
C、a,b中一個正數,一個負數,且正數的絕對值大于負數的絕對值
D、a,b中一個正數,一個負數,且負數的絕對值大于正數的絕對值
5、若a+b<0,ab<0,則()
A、a>0,b>0
B、a<0,b<0
C、a,b兩數一正一負,且正數的絕對值大于負數的絕對值
D、a,b兩數一正一負,且負數的絕對值大于正數的絕對值于0
《1.4.1.2有理數的乘法運算律》課時練習含答案
2、大于—3且小于4的所有整數的積為()
A、—12 B、12 C、0 D、—144
2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,這個運算運用了()
A、加法結合律
B、乘法結合律
C、分配律
D、分配律的逆用
3、下列運算過程有錯誤的個數是()
①×2=3—4×2
②—4×(—7)×(—125)=—(4×125×7)
③9×15=×15=150—
④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50
A、1 B、2 C、3 D、4
4、絕對值不大于2 015的所有整數的積是。
5、在—6,—5,—1,3,4,7中任取三個數相乘,所得的積最小是,最大是。
6、計算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的結果為。
7、計算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的結果是。
有理數的乘法教案12
【編者按】教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發學生的思維,針對疑點積極引導。
一、 學情分析:
在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。
二、 課前準備
把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。
三、 教學目標
1、 知識與技能目標
掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。
2、 能力與過程目標
經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
四、 教學重點、難點
重點:運用有理數乘法法則正確進行計算。
難點:有理數乘法法則的探索過程,符號法則及對法則的理解。
五、 教學過程
1、 創設問題情景,激發學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?
學生:
教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、 小組探索、歸納法則
教師出示以下問題,學生以組為單位探索。
以原點為起點,規定向東的方向為正方向,向西的方向為負方向。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為 。
(3)學生做 P76 練習1(1)(3),教師評析。
(4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由 決定,當負因數個數有 ,積為 ; 當負因數個數有 ,積為 ;只要有一個因數為零,積就為 。
4、 討論對比,使學生知識系統化。
有理數乘法
有理數加法
同號
得正
取相同的符號
把絕對值相乘
(-2)(-3)=6
把絕對值相加
(-2)+(-3)=-5
異號
得負
取絕對值大的加數的符號
把絕對值相乘
(-2)3= -6
(-2)+3=1
用較大的絕對值減小的絕對值
任何數與零
得零
得任何數
5、 分層作業,鞏固提高。
六、 教學反思:
本節課由情景引入,使學生迅速進入角色,很快投入到探究有理數乘法法則上來,提高了本節課的教學效率。在本節課的教學實施中自始至終引導學生探索、歸納,真正體現了以學生為主體的教學理念。本節課特別注重過程教學,有利于培養學生的分析歸納能力。教學效果令人比較滿意。如果是在法則運用時,編制一些訓練符號法則的口算題,把例2放在下一課時處理,效果可能更好。
【點評】:本節課張老師首先創設了一個密切社會生活的問題情景抗旱,由此引入新課,并利用學生熟悉的數軸去探究有理數的乘法法則,充分體現了課程源于生活,服務于生活,學生的學習是在原有知識上的自我建構的過程等理念,教學要面向學生的生活世界和社會實踐,教學活動必須尊重學生已有的知識與經驗,學生原有的知識和經驗是學習的基礎,學生的學習是在原有知識和經驗基礎上的自我生成的過程。
探索有理數乘法法則是本節課的重點,同時它又是一個具有探索性又有挑戰性的問題,因此張老師在這一教學環節花了大量的時間,精心設計了問題訓練單,將學生按組間同質、組內異質的原則分學習小組開展學習合作學習,使學生經歷了法則的探索過程,獲得了深層次的情感體驗,建構知識,獲得了解決問題的方法,培養了學生的探索精神和創新能力。
為了讓學生將獲得的新知識納入到原有的認知結構中去,便于記憶和提取,在教學的最后環節,張老師組織學生對有理數的乘法和有理數的加法進行對比,通過討論、比較使知識系統化、條理化,從而使自己的認知結構不斷地得以優化。學生自己建構知識,是建構主義學習觀的基本觀點,當新知識獲得之后,必須按一定方式加以組織,為新知識找到家,并為新知識安家落戶。
學生是一個活生生的人,是一個發展中的人,學生間的發展是極不平衡的,為了尊重學生的差異,以學生個體發展為本,張老師在教學中利用學生的個人性格不同,采用異質分組,使不同性格的學生組對交流、互換角色,達到了性格互補的目的。采取分層作業的方式,讓不同的人在數學學習中得到了不同的發展,使每個人的認識都得到完善,這正是新課程發展的核心理念──為了每一位學生的發展的具體體現。
本節課我們也同時看到在新課引入和法則探究兩個教學環節中,張老師的設計與教材完全不同,充分體現了教師是用教材,而不是教教材,這也是新課程所倡導的教學理念。教師教教科書是傳統的教書匠的表現,用教科書教才是現代教師應有的姿態。我們教師應從學生實際出發,因材施教,創造性地使用教材,大膽對教材內容進行取舍、深加工、再創造,設計出活生生的、豐富多彩的課來,充分有效地將教材的知識激活,形成有教師個性的教材知識。既要有能力把問題簡明地闡述清楚,同時也要有能力引導學生去探索、去自主學習。
有理數的乘法教案13
一、學情分析:
在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。
二、課前準備
把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。
三、教學目標
1、知識與技能目標
掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。
2、能力與過程目標
經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。
3、情感與態度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
四、教學重點、難點
重點:運用有理數乘法法則正確進行計算。
難點:有理數乘法法則的探索過程,符號法則及對法則的理解。
五、教學過程
1、創設問題情景,激發學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?
學生:……
教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、小組探索、歸納法則
(1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規定向東的方向為正方向,向西的方向為負方向。
a.2×3
2看作向東運動2米,×3看作向原方向運動3次。
結果:向 運動 米
2×3=
b.-2×3
-2看作向西運動2米,×3看作向原方向運動3次。
結果:向 運動 米
-2×3=
c.2×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
2×(-3)=
d.(-2)×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
(-2)×(-3)=
e.被乘數是零或乘數是零,結果是人仍在原處。
(2)學生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規律?
(+)×(+)=同號得
(-)×(+)=異號得
(+)×(-)=異號得
(-)×(-)=同號得
b.積的絕對值等于 。
c.任何數與零相乘,積仍為 。
(3)師生共同用文字敘述有理數乘法法則。
3、運用法則計算,鞏固法則。
(1)教師按課本P75例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為 。
(3)學生做P76練習1(1)(3),教師評析。
(4)教師引導學生做P75例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由 決定,當負因數個數有 ,積為 ;當負因數個數有 ,積為 ;只要有一個因數為零,積就為 。
4、討論對比,使學生知識系統化。
有理數乘法有理數加法
同號得正取相同的符號
把絕對值相乘
(-2)×(-3)=6把絕對值相加
(-2)+(-3)=-5
異號得負取絕對值大的加數的符號
把絕對值相乘
(-2)×3=-6(-2)+3=1
用較大的絕對值減小的絕對值
任何數與零得零得任何數
5、分層作業,鞏固提高。
六、教學反思:
本節課由情景引入,使學生迅速進入角色,很快投入到探究有理數乘法法則上來,提高了本節課的教學效率。在本節課的教學實施中自始至終引導學生探索、歸納,真正體現了以學生為主體的教學理念。本節課特別注重過程教學,有利于培養學生的分析歸納能力。教學效果令人比較滿意。如果是在法則運用時,編制一些訓練符號法則的口算題,把例2放在下一課時處理,效果可能更好。
有理數的乘法教案14
一、學情分析:
1、學生的知識技能基礎:學生在小學已經學習過非負有理數的四則運算以及運算律。在本章的前面幾節課中,又學習了數軸、相反數、絕對值的有關概念,并掌握了有理數的加減運算法則及其混和運算的方法,學會了由運算解決簡單的實際問題,具備了學習有理數乘法的知識技能基礎。
2、學生的活動經驗基礎:在相關知識的學習過程中,學生已經歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數的加法法則解決了一些實際問題,從而獲得了較為豐富的數學活動經驗,同時在以前的學習中,學生曾經歷了合作學習和探索學習的過程,具有了合作和探索的意識。
二、 教材分析:
教科書基于學生已掌握了有理數加法、減法運算法則的基礎上,提出了本節課的具體學習任務:發現探索有理數的乘法法則,了解倒數的概念,會進行有理數的運算。
本節課的數學目標是:
1、經歷探索有理數乘法法則的過程,發展觀察、歸納、猜想、驗證能力;
2、學會進行有理數的乘法運算,掌握確定多個不等于零的有理數相乘的積的符號方法以及有一個數為零積是零的情況:
三、教學過程設計:
本節課設計了六個環節:第一環節:問題情境,引入新課;第二環節:探索猜想,發現結論;第三環節:驗證明確結論;第四環節:運用鞏固,練習提高;第五環節:課堂;第六環節:布置作業。
第一環節:問題情境,引入新課
問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學生討論思考如何解答。
(2)如果用正號表示水位上升,用負號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。
設計意圖:培養學生從圖形語言和文字語言中獲取信息的能力,感受用數學知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數的乘法。
第二環節:探索猜想,發現結論
問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式
(-3×4)=-12,那么下列一組算式的結果應該如何計算?請同學們思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)當同學們寫出結果并說明道理時,讓學生通過觀察這組算式等號兩邊的特點去發現積的變化規律,然后再出示一組算式猜想其積的結果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前設計意圖:以算式求解和探究問題的形式引導學生逐步深入的觀察思考,從負數與非負數相乘的一組算式中發現規律后,猜想負數與負數相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數的乘法法則,并用語言表述之,以培養學生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項:(1)本環節的設計理念是學生通過觀察思考,親身經歷感受乘法法則的發現過程,并在合作交流中互相補充,完善結論。但在實際過程中,學生對結論的表述有困難,或者表達不準確,不全面,對于這些問題,不能求全責備,而應循循善誘,順勢引導,幫助學生盡可能簡練準確的表述,也不要擔心時間不足而代替學生直接表述法則。
(2)展示兩組算式時,注意板書藝術,把算式豎排,并對齊書寫,這樣易于學生觀察特點,發現規律。
第三環節:驗證明確結論
問題:針對上一環節探究發現的有理數乘法法則:兩數相乘,同號得正,異號得負,絕對值相乘,任何數與零相乘,積仍為零。進行驗證活動,出示一組算式由學生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前設計意圖:這個環節的設計一方面是因為它是合情推理的必要環節,另一方面是為了讓學生知道從特例歸納得到的結論不一定適合
一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數乘法法則的練習和熟悉過程。
教后反思事項:(1)教科書中沒有這個環節的要求,但在教學中應該設計這個環節,確實讓學生體驗經歷驗證過程。
(2)本環節的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現驗證的作用和過程。
(3)在用乘法法則計算時,要注意其運算步驟與加法運算一樣,都是先確定結果的符號,再進行絕對值的運算。另外還應注意:法則中的“同號得正,異號得負”是專指“兩數相乘而言的,”不可以運用到加法運算中去。
第四環節:運用鞏固,練習提高
活動內容:
(1)1。計算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。計算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“議一議”:幾個有理數相乘,因數都不為零時,積的符號怎樣確定?有一個因數為零時,積是多少?
(4)計算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設計意圖:對有理數乘法法則的鞏固和運用,練習和提高.
教后反思事項:(1)學生先自主嘗試解決,全班交流,教師點撥要注意格式規范,一開始對每一步運算應注明理由,運算熟練后,可不要求書寫每一步的理由;
(2)例2講解之后,要啟發學生完成"議一議"的內容,鼓勵學生通過對例2的運算結果觀察分析,用自己的語言表達所發現的規律,學生有困難時,教師可設置如下一組算式讓學生計算后觀察發現規律,而不應代替學生完成這個任務。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通過對以上算式的計算和觀察,學生不難得出結論:多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。當然這段語言,不需要讓學習背誦,只要理解會用即可。
第五環節:感悟反思課堂
問題
1.本節課大家學會了什么?
2.有理數乘法法則如何敘述?”
3.有理數乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設計意圖:培養學生的口頭表達能力,提高學生的參與意識。激勵學生展示自我。
教后反思事項:學生時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調準確記憶,而應鼓勵學生大膽發言,同時教師可用準確的語言適時的加以點撥。
第六環節:布置作業
鞏固作業:教科書知識技能1、2;問題解決1;聯系擴廣1
預習作業;略
四、教學反思:
1、設計條理的問題串,使觀察、猜想、驗證水到渠成
2、相信學生的探索能力。本節課的內容適合學生探索,只要教師適當引導,學生具有能力探索出有理數的乘法法則的,不需要教師代替,也不能代替。
3、合理使用多媒體教學手段可以彌補課堂時間的不足,但絕不能代替必要的板書。
有理數的乘法教案15
目標:
1、知識與技能
使學生理解有理數乘法的意義,掌握有理數的乘法法則,能熟練地進行有理數的乘法運算。
2、過程與方法
經歷探索有理數乘法法則的過程,理解有理數乘法法則,發展觀察、探究、合情推理等能力,會進行有理數和乘法運算。
重點、難點:
1、重點:有理數乘法法則。
2、難點:有理數乘法意義的理解,確定有理數乘法積的符號。
過程:
一、創設情景,導入新
1、由前面的學習我們知道,正數的加減法可以擴充到有理數的加減法,那么乘法是可也可以擴充呢?
乘法是加法的特殊運算,例如5+5+5=5×3,那么請思考:
(-5)+(-5)+(-5)與(-5)×3是否有相同的結果呢?本節我們就探究這個問題。
3、在一條由西向東的筆直的馬路上,取一點O,以向東的路程為正,則向西的路程為負,如果小玫從點O出發,以5千米的向西行走,那么經過3小時,她走了多遠?
二、合作交流,解讀探究
1、小學學過的乘法的意義是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果兩個數的和為0,那么這兩個數 互為相反數 。
2、由前面的問題3,根據小學學過的乘法意義,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、學生活動:計算3×(-5)+3×5,注意運用簡便運算
通過計算表明3×(-5)與3×5互為相反數,從而有
3×(-5)=-(3×5),由此看出,3×(-5)得負數,并且把絕對值3與5相乘。
類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正數,并且把絕對值5與3相乘。
4、提出:從以上的運算中,你能總結出有理數的乘法法則嗎?
鼓勵學生自己歸納,并用自己的語舞衫歌扇,并與同伴交流。
在學生猜測、歸納、交流的過程中及時引導、肯定
兩數相乘,同號得正,異號得負,絕對值相乘。
任何數與0相乘,積仍為0
(板書)有理數乘法法則:
三、應用遷移,鞏固提高
1、計算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)學生根據乘法法則,在練習本上完成。指定四位同學到黑板演習。
(2)教師:要求學生明確算理,學生做練習時,教師巡視,及時引導。
2、計算下列各題
① (-4)×5×(-0.25) ② ×( )×(-2)
③ ×( )×0×( )
指定三名同學在黑板上做,使學生明確,做有理數的乘法時,要先確定積的符號,再求出積的絕對值。
教師提出問題:幾個有理數相乘時,因數都不為0時,積是多少?
學生小結后,教師歸納:
幾個不為0的有理數相乘,積的符號由負因數的符號決定,負因數有奇數個時,積為負;負因數有偶數個時,積為正;只要有一個因數為0,則積為0
練習:本P31練習
四、總結反思(學生先小結)
1、有理數乘法法則
2、有理數乘法的一般步驟是:
(1)確定積的符號; (2)把絕對值相乘。
五、作業:P39習題1.5 A組 1、2
【有理數的乘法教案】相關文章:
有理數乘法的教案07-04
有理數的乘法教案06-20
有理數的乘法教案09-05
有理數的乘法教案范文07-04
有理數的乘法優質教案06-26
數學有理數的乘法教案03-07
有理數的乘法教案范文08-25
有理數的乘法經典教案09-07
有理數的乘法優秀教案09-07
關于有理數的乘法的教案09-07