亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

新高一數學優秀教案

時間:2022-09-27 20:47:15 教案 我要投稿

新高一數學優秀教案

  作為一名人民教師,通常需要用到教案來輔助教學,通過教案準備可以更好地根據具體情況對教學進程做適當的必要的調整。那么應當如何寫教案呢?下面是小編整理的新高一數學優秀教案,歡迎大家借鑒與參考,希望對大家有所幫助。

新高一數學優秀教案

新高一數學優秀教案1

  一、教材分析

  本節課選自《普通高中課程標準數學教科書—必修1》(人教A版)《1。2。1函數的概念》共3課時,本節課是第1課時。生活中的許多現象如物體運動,氣溫升降,投資理財等都可以用函數的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。函數是數學的重要的基礎概念之一,是高等數學重多學科的基礎概念和重要的研究對象。同時函數也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。

  二、學生學習情況分析

  函數是中學數學的主體內容,學生在中學階段對函數的認識分三個階段:

  (一)初中從運動變化的角度來刻畫函數,初步認識正比例、反比例、一次和二次函數;

  (二)高中用集合與對應的觀點來刻畫函數,研究函數的性質,學習典型的對、指、冪和三解函數;

  (三)高中用導數工具研究函數的單調性和最值。

  1、有利條件

  現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。

  初中用運動變化的觀點對函數進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規律的內容編排原則,函數概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數打下了一定的基礎。

  2、不利條件

  用集合與對應的觀點來定義函數,形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰,是本節課教學的一個不利條件。

  三、教學目標分析

  課標要求:通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域。

  1、知識與能力目標:

  ⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質屬性;

  ⑵理解函數的三要素的含義及其相互關系;

  ⑶會求簡單函數的定義域和值域

  2、過程與方法目標:

  ⑴通過豐富實例,使學生建立起函數概念的背景,體會函數是描述變量之間依賴關系的數學模型;

  ⑵在函數實例中,通過對關鍵詞的強調和引導使學發現它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。

  3、情感、態度與價值觀目標:

  感受生活中的數學,感悟事物之間聯系與變化的辯證唯物主義觀點。

  四、教學重點、難點分析

  1、教學重點:對函數概念的理解,用集合與對應的語言來刻畫函數;

  重點依據:初中是從變量的角度來定義函數,高中是用集合與對應的語言來刻畫函數。二者反映的本質是一致的,即“函數是一種對應關系”。但是,初中定義并未完全揭示出函數概念的本質,對y?1這樣的函數用運動變化的觀點也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個數集之間的一種對應關系,按照這種觀點,使我們對函數概念有了更深一層的認識,也很容易說明y?1這函數表達式。因此,分析兩種函數概念的關系,讓學生融會貫通地理解函數的概念應為本節課的重點。

  突出重點:重點的突出依賴于對函數概念本質屬性的把握,使學生通過表面的語言描述抓住概念的精髓。

  2、教學難點:

  第一:從實際問題中提煉出抽象的概念;

  第二:符號“y=f(x)”的含義的理解。

  難點依據:數學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。

  突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進行說明。

  五、教法與學法分析

  1、教法分析

  本節課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發,關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數概念自然過度到函數的近代定我。

  2、學法分析

  在教學過程中我注意在教學中引導學生用模型法分析函數問題、通過自主學習法總結“區間”的知識。

新高一數學優秀教案2

  教學目標:

  1、結合實際問題情景,理解分層抽樣的必要性和重要性;

  2、學會用分層抽樣的方法從總體中抽取樣本;

  3、并對簡單隨機抽樣、系統抽樣及分層抽樣方法進行比較,揭示其相互關系。

  教學重點:

  通過實例理解分層抽樣的方法。

  教學難點:

  分層抽樣的步驟。

  教學過程:

  一、問題情境

  1、復習簡單隨機抽樣、系統抽樣的概念、特征以及適用范圍。

  2、實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學生活動

  能否用簡單隨機抽樣或系統抽樣進行抽樣,為什么?

  指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性。

  由于樣本的容量與總體的個體數的比為100∶2500=1∶25,

  所以在各年級抽取的個體數依次是。即40,32,28。

  三、建構數學

  1、分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

  說明:

  ①分層抽樣時,由于各部分抽取的個體數與這一部分個體數的比等于樣本容量與總體的個體數的比,每一個個體被抽到的可能性都是相等的;

  ②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用。

新高一數學優秀教案3

  目標:

  (1)使學生初步理解集合的概念,知道常用數集的概念及其記法

  (2)使學生初步了解“屬于”關系的意義

  (3)使學生初步了解有限集、無限集、空集的意義

  重點:

  集合的基本概念

  教學過程:

  1、引入

  (1)章頭導言

  (2)集合論與集合論的—————康托爾(有關介紹可引用附錄中的內容)

  2、講授新課

  閱讀教材,并思考下列問題:

  (1)有那些概念?

  (2)有那些符號?

  (3)集合中元素的特性是什么?

  (4)如何給集合分類?

  (一)有關概念:

  1、集合的概念

  (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象。

  (2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合。

  (3)元素:集合中每個對象叫做這個集合的元素。

  集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……

  2、元素與集合的關系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

  (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  要注意“∈”的方向,不能把a∈A顛倒過來寫。

  3、集合中元素的特性

  (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了。

  (2)互異性:集合中的元素一定是不同的

  (3)無序性:集合中的元素沒有固定的順序。

  4、集合分類

  根據集合所含元素個屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應區分,0等符號的含義

  5、常用數集及其表示方法

  (1)非負整數集(自然數集):全體非負整數的集合。記作N

  (2)正整數集:非負整數集內排除0的集。記作N__或N+

  (3)整數集:全體整數的集合。記作Z

  (4)有理數集:全體有理數的集合。記作Q

  (5)實數集:全體實數的集合。記作R

  注:(1)自然數集包括數0。

  (2)非負整數集內排除0的集。記作N__或N+,Q、Z、R等其它數集內排除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z__

  課堂練習:教材第5頁練習A、B

  小結:本節課我們了解集合論的發展,學習了集合的概念及有關性質

  課后作業:第十頁習題1—1B第3題

新高一數學優秀教案4

  1、教材(教學內容)

  本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用、

  2、設計理念

  本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標、

  3、教學目標

  知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題、

  過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用、

  情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、

  4、重點難點

  重點:任意角三角函數的定義、

  難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、

  5、學情分析

  學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構、

  6、教法分析

  “問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用、

  7、學法分析

  本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。

新高一數學優秀教案5

  教學目標

  1、使學生掌握的概念,圖象和性質。

  (1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域。

  (2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質。

  (3)能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如的圖象。

  2、通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法。

  3、通過對的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣。使學生善于從現實生活中數學的發現問題,解決問題。教學建議

  教材分析

  (1)是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究。

  (2)本節的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數在和時,函數值變化情況的區分。

  (3)是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究。

  教法建議

  (1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。

  (2)對底數的限制條件的理解與認識也是認識的重要內容。如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來。

  關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。

新高一數學優秀教案6

  一、教材

  《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的.判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。

  二、學情

  學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。

  三、教學目標

  (一)知識與技能目標

  能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。

  (二)過程與方法目標

  經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

  (三)情感態度價值觀目標

  激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。

  四、教學重難點

  (一)重點

  用解析法研究直線與圓的位置關系。

  (二)難點

  體會用解析法解決問題的數學思想。

  五、教學方法

  根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持。在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。

  六、教學過程

  (一)導入新課

  教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

  教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。

  設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。

  (二)新課教學——探究新知

  教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。

  判斷方法:

  (1)定義法:看直線與圓公共點個數

  即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。

  (2)比較法:圓心到直線的距離d與圓的半徑r做比較,

  (三)合作探究——深化新知

  教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。

  已知直線3x+4y—5=0與圓x2+y2=1,判斷它們的位置關系?

  讓學生自主探索,討論交流,并闡述自己的解題思路。

  當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。

  (四)歸納總結——鞏固新知

  為了將結論由特殊推廣到一般引導學生思考:

  可由方程組的解的不同情況來判斷:

  當方程組有兩組實數解時,直線l與圓C相交;

  當方程組有一組實數解時,直線l與圓C相切;

  當方程組沒有實數解時,直線l與圓C相離。

  活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。

  (五)小結作業

  在小結環節,我會以口頭提問的方式:

  (1)這節課學習的主要內容是什么?

  (2)在數學問題的解決過程中運用了哪些數學思想?

  設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。

  作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。

  七、板書設計

  我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。

新高一數學優秀教案7

  教學目標

  1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法。

  (1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念。

  (2)能從數和形兩個角度熟悉單調性和奇偶性。

  (3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。

  2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。

  3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度。

  教學建議

  一、知識結構

  (1)函數單調性的概念。包括增函數。減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。

  (2)函數奇偶性的概念。包括奇函數。偶函數的定義,函數奇偶性的判定方法,奇函數。偶函數的圖像。

  二、重點難點分析

  (1)本節教學的重點是函數的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實。

  (2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。

  三、教法建議

  (1)函數單調性概念引入時,可以先從學生熟悉的一次函數,二次函數。反比例函數圖象出發,回憶圖象的增減性,從這點感性熟悉出發,通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來。在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。

  (2)函數單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律。函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。

【新高一數學優秀教案】相關文章:

最新高一數學下冊教案09-27

最新高一數學教案09-27

最新高三數學教案09-27

新高一數學的教學計劃04-12

新高一數學教學計劃01-16

新高一數學教學計劃02-23

小學數學優秀教案08-10

小學數學優秀教案09-15

數學精選優秀教案范文09-25