分數的基本性質教學設計教案
作為一名為他人授業解惑的教育工作者,通常需要用到教學設計來輔助教學,教學設計是教育技術的組成部分,它的功能在于運用系統方法設計教學過程,使之成為一種具有操作性的程序。怎樣寫教學設計才更能起到其作用呢?下面是小編收集整理的分數的基本性質教學設計教案,歡迎閱讀與收藏。
分數的基本性質教學設計教案1
教學目標:
1、理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2、理解和掌握分數的基本性質。
3、較好的實現知識教育與思想教育的有效結合。
教學重點:
理解和掌握分數的基本性質。
教學難點:
能熟練、靈活地運用分數的基本性質。
教學過程:
一、創設情景
師:同學們,為了讓你們了解到更多的科技知識,在科技周活動中,學校做了三塊科普展板(投影出示教材中的三塊展板)。同學們認真觀察,你們能提出什么問題?
師:猜想對解決問題很重要,它們到底相不相等?下面以小組為單位,想辦法來驗證一下。
二、新授
師:同學們想了很多好的方法,哪個小組愿意匯報一下?
生1:我們組是用畫圖的方法來驗證的。我們先畫了三個大小一樣的正方形表示三塊展板,把它們分別平均分成2份、4份和8份,再分別去其中的1份、2份和4份涂上顏色(展示學生畫的圖)。通過比較我們發現,涂色部分的大小是相等的,所以
生2:我們組是用折紙的方法來驗證的。我們先取了三根同樣長的紙條,通過對折把它們分別平均分成2份、4份和8份,分別涂色表示(展示學生的折紙情況)。通過折紙我們組也發現(學生在小組中討論、驗證)
師:我們發現的這個規律,就是分數的基本性質。
同學們現在小組內總結一下,什么是分數的基本性質?
(學生認真討論)
師:同學們匯報一下你們的討論結果。
三、自主練習、鞏固提高
課本第80頁1、2、3、題。
其中,第1題引導學生通過涂色和比較,加深對分數基本性質的直觀感受。
第2題二生爬黑板板演,第3、4題學生自做。師巡視指導。
課堂小結:
一生小結,他生補充,教師評判。
分數的基本性質教學設計教案2
設計說明
1、注重情境創設,激發學生的學習興趣。
偉大的科學家愛因斯坦說過:“興趣是最好的老師。”也就是說一個人一旦對某個事物產生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產生愉快的情緒,因此教學時要重視興趣在智力開發中的作用。本課時的教學通過分餅這一故事情境來創設一種和諧、愉悅的氣氛,激發學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的。接著教師提問設疑,導入新課。
2、突出學生的主體地位,在實踐操作中掌握新知。
學生是學習的主體,教師要時刻關注學生的主體地位。在探究分數的基本性質的過程中,給予學生充分的學習空間,讓學生自主探究,經歷折一折、畫一畫、剪一剪、比一比的過程,得出分數的基本性質,體驗成功的快樂。
課前準備
教師準備PPT課件
學生準備若干張同樣大小的圓形紙片、彩筆
教學過程
一、故事引入
1、教師講故事。
師:老師給大家講一個分餅的故事,你們想聽嗎?三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們三兄弟吃,媽媽先把第一張餅平均分成兩份,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份。”媽媽又點點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。
大毛、二毛、三毛都滿意地笑了,媽媽也笑了。
設計意圖:借助故事給學生創設一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發學生的學習興趣。
2、探究驗證。
(1)提出猜想。
師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?
生:同樣多。
師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數學家,一起來驗證這個猜想吧!
(2)驗證猜想。
請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。
①折一折:把每張圓形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。
②涂一涂:在折好的圓形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數表示出來。
③剪一剪:把圓形紙片中的涂色部分剪下來。
④比一比:把剪下的涂色部分重疊,比一比。
師:通過比較,結果是怎樣的?
生:同樣大。
設計意圖:通過自主猜想、自主驗證、自主發現,讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態的知識轉化為動態的求知過程,經歷分數的基本性質的形成過程。
3、揭示課題。
師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內容:分數的基本性質。(師板書,生齊讀課題)
二、探究新知
1、觀察比較,探究規律。
(1)請同學們觀察,比較三個分數的大小。
師:三兄弟分得的餅同樣多,那么這三個分數的大小是怎樣的呢?(相等)
師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。
(2)請同學們仔細觀察,這三個分數什么變了,什么沒變?(分子、分母變了,大小沒變)
師:這三個分數的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?
(課件出示:比較它們的分子和分母)
①從左往右看,是按照什么規律變化的?
②從右往左看,又是按照什么規律變化的?小組內討論,交流一下你們的發現。
師:我們從左往右看,誰愿意說一說自己的發現?(分數的分子和分母同時乘相同的數,分數的大小不變)
師:我們從右往左看,誰愿意說一說自己的發現?[分數的分子和分母同時除以相同的數(0除外),分數的'大小不變]
師:你們能把這兩個發現合并成一句話嗎?[分數的分子和分母同時乘或者除以相同的數(0除外),分數的大小不變]
師:請同學們思考一下,這個數為什么不能是0?同桌之間討論。(因為在分數中,分母不能為0,并且在除法里,0不能作除數,所以這個數不能是0)
(3)教師總結分數的基本性質。(板書)
分數的基本性質教學設計教案3
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納分數的性質。
學生準備:
長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3、引導觀察:
請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
5、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
分數的基本性質教學設計教案4
教學目標:
知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養學生觀察比較、抽象概括及動手實踐的能力,進一步發展學生的思維。
過程與方法:
經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態度與價值觀:激發學生積極主動的情感狀態,養成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:
理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:
自主探究出分數的基本性質
教學準備:
PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發表見解。
二、自主合作探索規律
1、反饋引導:1/2=2/4=4/8。“三個徒弟分得的餅一樣多———等式———仔細瞧瞧這組分數等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
(2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、引證規律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。
三、自學例題運用規律
過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”。現在開始
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,
作業:余下來的時間請完成課本97頁練習十八的1—3題,做在書上。
分數的基本性質教學設計教案5
一、教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
二、教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
三、教學難點:
理解和掌握分數的基本性質,初步建立數學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
(一)遷移舊知。提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張,誰能猜出另一張是什么?出示:2÷3
你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數÷除數=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密。除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
A、看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
B、討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8
C、研究規律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者除以一個相同的數得到的分數
研究對象與得到的分數相等嗎?
相等()不相等()
猜想是否成立?
成立()不成立()
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=()/18、6/21=2/()、3/5=21/()、27/39=()/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯系?
D、質疑完善
3/4=3×()/4×()
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4=3×X/4×X(X≠0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
(三)練習升華
1、5/7=()/35、3/4=9/()、3/()=12/20、16/24=()/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、和哪一個分數大,你能講出判斷的依據嗎?
(四)總結延伸
師:這節課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)(板書)
六、作業p87—1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)
6÷8
3÷4
12÷16
【分數的基本性質教學設計教案】相關文章:
分數的基本性質的教學設計12-19
《分數的基本性質》教學設計06-05
分數的基本性質教學設計03-19
《分數基本性質》的教學設計01-22
分數的基本性質的教學設計07-08
《分數基本性質》教學設計07-01
分數的基本性質教學設計09-08
《分數基本性質》教學設計09-14
分數的基本性質教學設計09-15