亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

二次根式教案

時間:2022-08-13 10:40:55 教案 我要投稿

【精選】二次根式教案3篇

  在教學工作者實際的教學活動中,時常會需要準備好教案,編寫教案有利于我們科學、合理地支配課堂時間。我們應該怎么寫教案呢?下面是小編整理的二次根式教案3篇,歡迎閱讀,希望大家能夠喜歡。

【精選】二次根式教案3篇

二次根式教案 篇1

  教學目標

  1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

  教學過程設(shè)計

  一、復習

  1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

二次根式教案 篇2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學生學習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).

  二、目標和目標解析

  1.教學目標

  (1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

  (2)會運用二次根式的性質(zhì)進行二次根式的化簡;

  (3)了解代數(shù)式的概念.

  2.目標解析

  (1)學生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

  (2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

  (3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

  三、教學問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

  本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.

  四、教學過程設(shè)計

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.

  例2 計算

  (1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.

  例3 計算

  (1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

  4.綜合運用

  (1)算一算:

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

  (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

  【設(shè)計意圖】通過此問題的設(shè)計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

  (3)談一談你對 與 的認識.

  【設(shè)計意圖】加深學生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

  (1)你知道了二次根式的哪些性質(zhì)?

  (2)運用二次根式性質(zhì)進行化簡需要注意什么?

  (3)請談談發(fā)現(xiàn)二次根式性質(zhì)的思考過程?

  (4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

  6.布置作業(yè):教科書習題16.1第2,4題.

  五、目標檢測設(shè)計

  1. ; ; .

  【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

  2.下列運算正確的是( )

  A. B. C. D.

  【設(shè)計意圖】考查學生運用二次根式的性質(zhì)進行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計意圖】考查學生對一個數(shù)非負數(shù)的算術(shù)平方根的理解.

  4.計算: .

  【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.

二次根式教案 篇3

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的概念.

  2.內(nèi)容解析

  本節(jié)課是在學生學習了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質(zhì)和四則運算打基礎(chǔ).

  教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學生對二次根式的定義的理解.

  本節(jié)課的教學重點是:了解二次根式的概念;

  二、目標和目標解析

  1.教學目標

  (1)體會研究二次根式是實際的需要.

  (2)了解二次根式的概念.

  2. 教學目標解析

  (1)學生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

  (2)學生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

  三、教學問題診斷分析

  對于二次根式的定義,應側(cè)重讓學生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的`算術(shù)平方根 ≥0也是非負數(shù).教學時注意引導學生回憶在實數(shù)一章所學習的有關(guān)平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

  本節(jié)課的教學難點為:理解二次根式的雙重非負性.

  四、教學過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

  (1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

  (2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

  (3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動:學生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當引導和評價.

  【設(shè)計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

  【設(shè)計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3 你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

  師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設(shè)計意圖】讓學生體會由特殊到一般的過程,培養(yǎng)學生的概括能力.

  追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

  師生活動:教師引導學生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

  【設(shè)計意圖】進一步加深學生對二次根式被開方數(shù)必須是非負數(shù)的理解.

  3.辨析概念,應用鞏固

  例1 當 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

  師生活動:引導學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數(shù)為非負數(shù)的理解.

  例2 當 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

  師生活動:先讓學生獨立思考,再追問.

  【設(shè)計意圖】在辨析中,加深學生對二次根式被開方數(shù)為非負數(shù)的理解.

  問題4 你能比較 與0的大小嗎?

  師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結(jié)論,強化學生對二次根式本身為非負數(shù)的理解,

  【設(shè)計意圖】通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生分類討論和歸納概括的能力.

  4.綜合運用,鞏固提高

  練習1 完成教科書第3頁的練習.

  練習2 當x 是什么實數(shù)時,下列各式有意義.

  (1) ;(2) ;(3) ;(4) .

  【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.

  5.總結(jié)反思

  教師和學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答以下問題.

  (1)本節(jié)課你學到了哪一類新的式子?

  (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  (3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動:教師引導,學生小結(jié).

  【設(shè)計意圖】:學生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法.

  6.布置作業(yè):

  教科書習題16.1第1,3,5, 7,10題.

  五、目標檢測設(shè)計

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

  2. 當 時,二次根式 無意義.

  【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

  3.當 時,二次根式 有最小值,其最小值是 .

  【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

  4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

  【設(shè)計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

【二次根式教案】相關(guān)文章:

二次根式的教案10-19

《二次根式的運算》的教案09-15

關(guān)于二次根式教案08-27

二次根式教案九篇02-06

二次根式教案4篇07-21

【精選】二次根式教案4篇07-02

二次根式說課稿01-11

什么是同類二次根式,什么是最簡二次根式09-30

《二次根式的加減》教案設(shè)計07-01

最簡二次根式教案范文11-01