圓的面積教案模板集合五篇
作為一名辛苦耕耘的教育工作者,就難以避免地要準備教案,教案是教學藍圖,可以有效提高教學效率。來參考自己需要的教案吧!下面是小編收集整理的圓的面積教案5篇,希望能夠幫助到大家。
圓的面積教案 篇1
教學目標:
1、使學生學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。
2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的實際問題。
3、培養(yǎng)學生的邏輯思維能力。
教學重點:培養(yǎng)綜合運用知識的能力。
教學難點:培養(yǎng)綜合運用知識的能力。
教學過程:
一、復習。
1、口算:
3242528292202
267
2、思考:
(1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?
(2)求圓的面積需要知道什么條件?
(3)知道圓的周長能夠求它的面積嗎?
二、新課。
1、教學練習十六第3題
小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?
已知:c=125.6厘米s=r2
r:125.6(23.14)3.14202
=125.66.28=3.14400
=20(厘米)=1256(平方厘米)
答:這棵樹干的橫截面積1256平方厘米。
3、教學環(huán)形面積。
(1)例2光盤的銀色部分是個圓環(huán),內圓半徑是2cm,外圓半徑是6cm。它的面積是多少?
已知:R=6厘米r=2厘米求:s=?
3.14623.1422
=3.1436=3.144
=113.04(平方厘米)=12.56(平方厘米)
113.04-12.56=100.48(平方厘米)
第二種解法:3.14(62-22)=100.48(平方厘米)
(2)小結:環(huán)形的面積計算公式:
S=R2-r2或S=(R2-r2)
(3)完成做一做:一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
三、鞏固練習。
1、學校有個圓形花壇,周長是18.84米,花壇的面積是多少?
選擇正確算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、環(huán)形鐵片,外圈直徑20分米,內圓半徑7分米,環(huán)形鐵片的面積是多少?
3、課堂小結。
(1)這節(jié)課的學習內容是什么?
(2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?
已知半徑求面積S=r2
已知直徑求面積S=()2
已知周長求面積S=()2
(3)環(huán)形面積:S=(R2-r2)
四、作業(yè)
課本P70第4、6、7題。
教學追記:
本堂課,在我?guī)ьI著學生利用教具進行操作,在此基礎上,讓學生自主發(fā)現(xiàn)圓的面積與拼成長方形面積的關系,圓的周長、半徑和長方形的長、寬的關系,并推導出圓的面積計算公式。教學環(huán)形的面積計算時,我充分放手給學生,讓學生通過思考討論領悟出求環(huán)形的面積是用外圓面積減去內圓面積,并引導他們發(fā)現(xiàn)這兩種算法的一致性,同時提醒學生盡量使用簡便算法,減少計算量。
圓的面積教案 篇2
教學內容分析:
圓的面積是學生認識了圓的特征、學會計算圓的周長以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。由于以前所學圖形的面積計算都是直線圖形面積的計算,而像圓這樣的曲邊圖形的面積計算,學生還是第一次接觸到,所以具有一定的難度和挑戰(zhàn)性。教學關鍵之處在于學生通過觀察猜想、動手操作、計算驗證,自主探索、推導出圓的面積公式并能靈活應用圓的面積公式解決實際問題。因此本課的教學應緊緊圍繞“轉化”思想,引導學生聯(lián)系已學知識把新知識納入已有知識中分析、研究、歸納,從而完成對新知的建構過程,建立數(shù)學模型,培養(yǎng)解決問題的綜合能力。
學生情況分析:
小學對幾何圖形的認識很大程度屬于直觀幾何的學習階段,而幾何本身比較抽象的。本節(jié)內容學生從認識直線圖形發(fā)展到認識曲線圖形,又是一次飛躍,但從學生思維角度看,五年級學生具有一定的抽象和邏輯思維能力。這一學段中的學生已經(jīng)有了許多機會接觸到數(shù)與計算、空間圖形等較豐富的數(shù)學內容,已經(jīng)具備了初步的歸納、類比和推理的數(shù)學活動經(jīng)驗,并具有了轉化的數(shù)學思想。所以在教學應注意聯(lián)系現(xiàn)實生活,組織學生利用學具開展探索性的數(shù)學活動,注重知識發(fā)現(xiàn)和探索過程,使學生感悟轉化、極限等數(shù)學思想,從中獲得數(shù)學學習的積極情感,體驗和感受數(shù)學的力量。同時在學習活動中,要使學生學會自主學習和小組合作,培養(yǎng)學生解決數(shù)學問題的能力。
教學目標:
1、讓學生經(jīng)歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。
2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業(yè)紙。
教學過程:
一、創(chuàng)設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
(復習圓的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續(xù)來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活。】
二、猜想驗證、初步感知
1、實驗驗證
(1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
(2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數(shù)數(shù)圓的面積是多少。
師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?
(引導學生發(fā)現(xiàn)可以先數(shù)出 個圓的方格數(shù),再乘4就是圓的面積)
(讓學生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)
圓的半徑
(cm)
圓的面積
(cm2)
圓的面積
(cm2)
正方形的面積
(cm2)
圓的面積大約是正方形面積的幾倍
(精確到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
(學生完成后交流匯報。)
師:仔細觀察表中的數(shù)據(jù),你有什么發(fā)現(xiàn)?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經(jīng)過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的面積是正方形面積也就是它半徑平方的3倍多一些。
【設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經(jīng)驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性。】
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
(引導學生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
(學生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
(分別演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
(引導學生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數(shù)越來越多。
(引導學生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
【設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想。】
(2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內交流一下。
(小組討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
(通過長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業(yè)紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?
【設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經(jīng)驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經(jīng)歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內在美,品嘗到成功的喜悅。】
四、解決問題、拓展應用
1、師:在日常生活中,經(jīng)常會遇到與圓面積計算有關的實際問題。
(課件出示例9)
分析題意后學生獨立完成書本第105頁例9。
(組織交流,評價反饋)
2、完成作業(yè)紙第4題
師:接著看,默讀題目,完成作業(yè)紙第3題。
(學生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經(jīng)常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!
【設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經(jīng)驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。】
板書設計:
圓的面積
轉化
新的圖形學過的圖形
演示圖
長方形的面積=長×寬
圓的面積=圓周長的一半 × 半徑
S=πr×r
=πr2
(1)3.14×22(2)8÷2=4(cm)
=3.14×43.14×42
=12.56(cm2)=3.14×16
=50.24(cm2)
圓的面積教案 篇3
教學內容:
蘇教國標版五年級下冊103-105頁及練一練和練習十九1-3題。
教材分析:
本課時內容是在學生已掌握了圓的基本特征和圓的周長公式的基礎上,引導學生探索并掌握圓的面積公式。通過3個例題教學,采用兩種不同的的策略,推導出圓的面積,讓學生充分感受到圓的面積公式推導過程的合理性。
教學時,一要重點引導學生用數(shù)方格的方法計算圓面積及對相關數(shù)據(jù)進行分析和比較的過程中,發(fā)現(xiàn)圓的面積和以它的半徑為邊長的正方形面積之間的近似關系;二要把握兩個關鍵環(huán)節(jié):一是圓可以轉化成過去所學過的什么圖形;二是轉化成的這個圖形與原來的圓有什么聯(lián)系。最后通過應用實踐讓學生運用知識解決實際問題的成功體驗,增強學生學習數(shù)學的信心。
學情分析:
1、學生已有知識基礎
在學習本課內容前,學生已經(jīng)認識了圓,會求圓的周長,在學習長方形、平行四邊形、三角形、梯形等平面圖形的面積時,已經(jīng)學會了用割、補、移等方式,把未知的問題轉化成已知的問題。因此教學本課時,可以引導學生用轉化的方法推導出圓的面積公式。
2、對后繼學習的作用
圓面積的計算是今后學習圓柱、圓錐等內容的重要基礎。
教學目標:
1、知識與技能:
(1)理解圓的面積的含義。
(2)經(jīng)歷圓的面積公式的推導過程,理解和掌握圓的面積公式。
(3)培養(yǎng)學生分析、綜合、抽象、概括的能力和解決簡單實際問題的能力。
2、過程與方法:
經(jīng)歷圓的面積公式的推導過程,體驗實驗操作、邏輯推理的學習方法。
3、情感與態(tài)度:
感悟數(shù)學知識內在聯(lián)系的邏輯之美,體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識,培養(yǎng)學生學習數(shù)學的興趣。
教學重點:正確掌握圓面積的計算公式。
教學難點:圓面積計算公式的推導過程。
教學準備:
1.CAI課件;
2.把圓16等分、32等分和64等分的硬紙板若干個;
教學設計:
一、創(chuàng)設情境,提出問題。
投影出示草坪噴水插圖
師:請大家觀察這幅插圖,說說從圖中你能發(fā)現(xiàn)數(shù)學知識嗎?
學生觀察、討論并交流:
生1:我能發(fā)現(xiàn)噴水頭轉動一周所走過的地方剛好是一個圓形。
生2:這個圓形的半徑就是噴頭噴水的距離,也就是5米;周長就是噴水所走過的路線;
生3:這個圓形的中心就是噴頭所在的地方。
師:請大家說說這個圓形的面積指的是哪部分呢?
生4:被噴到水的草坪大小就是這個圓形的面積。
師:今天這節(jié)課我們就來學習如何求噴水頭轉動一周澆灌的面積有多大。(板書:圓的面積)
二、自主探究,合作交流:
1、課件先出示一個正方形,再以正方形的一個頂點為圓心,邊長為半徑畫一個圓,請學生觀察:正方形的邊長與圓的什么有關系?如果半徑是r,正方形的面積是多少?
板書:正方形的邊長=圓的半徑r
正方形的面積=r2
2、猜想:圓的面積是正方形面積的多少倍?你是怎樣想的?
3、教學例7
⑴談話:剛才我們猜想圓的面積是正方形面積的3倍多,下面我們用數(shù)方格的方法來研究。
⑵課件出示例7第一幅圖表,請同學們按照圖表的要求數(shù)一數(shù),算一算,把表格填完整,再在小組里交流。
⑶小組匯報(實物投影展示學生填寫的表格)
⑷剛才我們通過一個圓驗證了我們的猜想圓的面積大約是正方形面積的3倍多一些,而一個圓還不足以說明問題,我們再找兩個圓用同樣的方法驗證。課件出示例7的第二幅圖表,小組合作完成表格。
⑸小組匯報交流
⑹談話:通過猜想、驗證,我們都認為圓的面積是正方形面積的3倍多一些,我們知道正方形的邊長等于圓的半徑r,正方形的面積等于r2,那么圓的面積與它的半徑有什么關系呢?
板書:S=r2×3倍多
[設計意圖]
讓學生仔細觀察正方形和圓的關系后大膽猜想圓的面積是正方形的多少倍,接著從學生熟悉的“數(shù)方格”初步驗證猜想,為進一步探索圓的面積公式作準備,獲得的結論與例8推導出來的公式互相印證,能使學生充分感受圓面積公式推導過程的合理性,加深對有關圓形轉化方法的體會。
三、動手操作,探索新知
1.回憶平行四邊形、三角形、梯形面積計算公式推導過程。
(1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?
(2)通過回憶這三種平面圖形面積計算公式的推導,你發(fā)現(xiàn)了什么?
(3)能不能把圓轉化為學過的圖形來推導出它的面積計算公式呢?
2.推導圓面積的計算公式。
(1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?
(2)學生小組討論。
看拼成的長方形與圓有什么聯(lián)系?
學生匯報討論結果。
(3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)
(4)你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr×r
S=πr2師小結公式S=πr2,讓學生小組內說說圓的面積是怎樣推導出來的?
(5)讀公式并理解記憶。
(6)要求圓的面積必須知道什么?(半徑)
四、聯(lián)系實際,解決問題:
1教學例9
(1)課件出示例9;
(2)說出已知條件和問題;
(3)學生自己試做;
(4)講評,注意公式、單位使用是否正確。
2師:“老師的家中新買了一張圓桌,你們想看嗎?(教師用電腦顯示圖片)為了保護好桌面,我想為桌面配一塊和桌面一樣大的玻璃,但不知該畫一塊多大的玻璃?(電腦中標示出桌面直徑)。
五、全課總結,課后延伸:
1、今天這節(jié)課你學到了什么?
2、圓面積的計算方法,我們是怎樣探索出來的?
3、小結:這節(jié)課我們通過猜想、動手操作把圓轉化成近似的長方形來驗證猜想,這是一種重要的數(shù)學思想方法,希望大家在今后的學習中大膽猜想,勇于探索,解決生活中的數(shù)學問題。
六、布置作業(yè)
1.第107頁的第1-3題。
2.找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物直徑(厘米)半徑(厘米)面積(平方厘米)
七、板書設計:
圓的面積
S=r2×3倍多
長方形的面積=長×寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
教學反思
本課時從生活中噴水頭澆灌農田這一生活場景引入,使學生理解了推導圓面積公式的必要性,激發(fā)了學生的求知欲望,調動了學生的積極性,使全體學生積極參與到數(shù)學學習活動中來。在強烈的求知欲望驅使下,學生憑借已有的生活經(jīng)驗和知識經(jīng)驗,發(fā)揮自己的想象,從估計到公式的推導;從數(shù)方格到剪拼成學過的平面圖形。在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時遵循學生的認識規(guī)律,從學生的生活經(jīng)驗和已有的知識出發(fā),重視學生獲取知識的思維過程,。重點引導學生將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養(yǎng)學生的創(chuàng)新意識、實踐能力,發(fā)展學生的空間觀念,從而正確掌握圓面積的計算公式。
圓的面積教案 篇4
第一課時
教學內容
圓的面積
教材第67、第68頁的內容。
教學要求
1.使學生理解圓的面積公式的推導過程,掌握求圓的面積的方法并能正確計算。
2.培養(yǎng)學生運用轉化的思想解決問題的能力。
重點難點
重點:掌握圓的面積的計算公式,能夠正確地計算圓的面積。
難點:理解圓的面積公式的推導過程。
教具學具
實物投影,各種圖形的紙片。
教學過程
一導入
1.我們學過哪些平面圖形的面積公式?
2.長方形、平行四邊形和三角形的面積公式分別是什么?
3.平行四邊形的面積公式是如何推導的?小結:平行四邊形面積公式的推導,提供給我們一種研究平面圖形的面積的方法,即把所學的圖形進行分割、拼擺,轉化成學過的圖形,用舊知識解決新問題。今天,我們還要用轉化的思想研究圓的面積。
二教學實施
1.明確圓的面積的概念。
(1)老師出示一個圓,提問:誰能聯(lián)系我們學過的圖形的面積說一說圓的面積是什么?
學生回答,老師歸納:圓所圍成的平面的大小叫做圓的面積。
(2)圓的大小是由什么決定的?
(3)展示由“曲”變“直”的漸變圖。
引導學生逐層觀察圓周曲線的變化情況,把圓等分的份數(shù)越多,圓周曲線就越來越直,當我們繼續(xù)分下去……圓周曲線就變成一條近似的直線段了,用這樣的小塊拼擺的圖形就更近似于我們學過的圖形。
2.學生動手操作,推導圓的面積公式。
為了研究方便,我們把圓等分成16份,圓周部分近似看作線段,其中的一份是個近似的三角形,
(1)指導學生動手擺學具,并思考幾個問題:
你擺的是什么圖形?
你擺的圖形的面積與圓的面積有什么關系?
所擺圖形的各部分相當于圓的什么?
你如何推導出圓的面積?
(2)學生動手擺學具,然后發(fā)言。
拼成長方形:
老師說明:如果分的份數(shù)越多,每一份就會越小,拼成的圖形就會越接近長方形。
出示教材第67頁上面的圖加以說明。
拼成的近似長方形的長和寬與圓的各部分有什么關系?
從圖中可以看出圓的半徑是r,長方形的長是πr,寬是r。
長方形的面積=長×寬
↓ ↓↓
圓的面積=πr×r=πr2
如果用S表示圓的面積,那么圓的面積計算公式就是S=πr2。
3.利用公式計算圓的面積。
出示例1:圓形草坪的直徑是20m,每平方米草皮8元。鋪滿草坪需要多少錢?
指名讀題,讓學生試做,提醒學生不用寫公式,直接列算式就可以。
板書:20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:鋪滿草坪需要2512元。
老師強調指出:列出算式后,要先算平方,再與π相乘。
三課堂作業(yè)新設計
1.直接寫出得數(shù)。
22= 32= 42= 52= 62= 72=
82= 92= 102= 0.22=0.72= 0.92=
2.求下面各圓的面積。
3.一塊圓形鐵板的半徑是3分米。它的面積是多少平方分米?
4.一個圓桌桌面的直徑是1.2米。它的面積是多少平方米?
四思維訓練
計算陰影部分的面積。(單位:分米)參考答案
課堂作業(yè)新設計
1.491625364964811000.040.490.81
2.12.56平方分米28.26平方分米1256平方厘米28.26平方米
3.28.26平方分米
4.1.1304平方米
思維訓練
3.44平方分米
板書設計
圓的面積
長方形的面積=長×寬
↓ ↓↓
圓的面積=πr×r=πr2
20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:鋪滿草坪需要2512元。
備課參考教材與學情分析
本部分內容是在初步認識了圓,學習了圓的`周長,以及學過幾種常見直線幾何圖形的面積的基礎上進行教學的。學生從學習直線圖形的面積,到學習曲線圖形的面積,不論是內容本身還是研究方法,都是一次質的飛躍。學生掌握了圓面積的計算,不僅能解決簡單的實際問題,也為以后學習圓柱、圓錐的知識打下基礎。學生已經(jīng)有了平面幾何圖形的經(jīng)驗,知道運用轉化的思想研究新的圖形的面積,在學習中要鼓勵學生大膽想象、勇于實踐。在操作中將圓轉化成已學過的平面圖形,從中找到圓的面積與半徑、直徑的關系。
課堂設計說明
1.通過實際情境,一方面使學生了解圓的面積的含義,另一方面使學生體會到在實際生活中計算圓面積的必要性。
2.教學時,強調知識遷移的過程。
平行四邊形、三角形和梯形的面積公式推導過程是學生知識遷移的基礎,這一環(huán)節(jié)的設計既能勾起學生對已有知識的回憶,又能啟發(fā)學生運用轉化的思想解決數(shù)學問題。
3.組織學生觀察猜想。
先觀察再猜想的方法既培養(yǎng)了學生的空間想象力,又發(fā)展了學生的邏輯推理能力。
圓的面積教案 篇5
一、教材內容分析
新人教版上冊《圓的面積》這部分內容是平面幾何的最后階段,它既是前面所學直觀地認識平面圖形及有關計算的延續(xù)和發(fā)展,又為今后逐步由實驗幾何階段轉入論證幾何階段作了滲透和準備。因此,在教學時,主要是讓學生用轉化的思想進行操作、觀察和比較,推導圓的面積計算公式。并讓他們初步學會用確切、簡明的數(shù)學語言表述概念的本質特征,引導學生初步接觸歸納推導出公式并理解和掌握公式的應用,為以后進一步學習打下基礎。
二、學習者特征分析
六年級的學生已掌握了長方形、平行四邊形、三角形、梯形的面積公式的推導方法,具有一定的轉化和類比推理能力,并具對圓和圓的周長知識已經(jīng)有了初步的掌握,有強烈的好奇心。因此,易于在轉化和類比推理方面進行啟發(fā)和引導,讓學生利用已有的知識和經(jīng)驗,實現(xiàn)《圓的面積》公式的推導,但由于圓是由一條曲線圍成的圖形,學生很難跟以往由幾條線段圍成的圖形之間建立必然的聯(lián)系。因此,在利用轉化和類比推理基礎上,結合操作演示,讓學生在學習圓面積公式的推導過程中,提高學習興趣,掌握學習方法,增加感性的認識,從而真正掌握圓的面積公式的推導過程。并且能應用公式解決一些生活實際問題。
三、教學目標(知識,技能,情感態(tài)度、價值觀)
1、利用學生已有的知識,引導學生通過觀察、操作、分析和討論,推導出圓的面積公式,并能運用公式解答一些簡單的實際問題。
2、使學生經(jīng)過“感知——動腦——觀察——合作探究”等系列活動.逐漸培養(yǎng)學生的抽象思維能力。
3、通過實例引入,讓學生體驗數(shù)學來源于生活,又服務于生活;向學生展示生動、活潑的數(shù)學天地,喚起學生學習數(shù)學的興趣,使全體學生積極參與探索,在參與中體驗成功的樂趣。使學生感受到生活中數(shù)學的魅力,讓學生體會圖形轉化的神奇和美。
四、教學策略選擇與設計
1、注重情境創(chuàng)設,有意識地激發(fā)學生學習知識的興趣
數(shù)學來源于生活,通過實際情境,既創(chuàng)設了生動的生活情境,激發(fā)了學生參與的興趣,又為后繼學習和深入探究埋下了伏筆。而且在直觀的動畫情境中很好地展示了圓的面積概念。使學生體會到實際生活中計算圓的面積的必要性,同時也激發(fā)了學生求知的欲望和學習興趣。
2、 注重實踐操作,有意識地培養(yǎng)學生獲取知識的能力
學習是學生的內部活動,因此,在課堂教學中既要重視其學習結果,更要重視其學習過程,學生的創(chuàng)造潛能,存在于學習過程、探究過程之中,而不存在于數(shù)學結論中,只有實實在在的學習過程、思維過程、探究過程,才能有所創(chuàng)造,培養(yǎng)學生自己探索獲取知識的能力。這節(jié)課的教學,緊緊抓住“圓面積公式的推導”這一教學重點,敢于放手讓學生自己動手操作,歸納整理。通過學生的剪拼,轉化,利用等積變形把圓面積轉化成了其他的平面圖形,進而歸納、概括出圓面積的計算方法。這種多角度的思考,既溝通了新、舊知識的聯(lián)系,又激發(fā)了學生的求知欲,使學生不僅知其然,更知其所以然。
3、 注重學法指導,有意識地引導學生應用轉化的方法
本節(jié)課中,在求圓面積公式時,不是教師灌輸式地教會學生S =πr,而是由學生在原有知識經(jīng)驗的基礎上,通過“觀察——猜測——操作——分析——探究”, 并在老師的引導下,利用“轉化”的思想,將圓變成已學的圖形:長方形、三角形、梯形。通過學生自主動手剪拼,然后研究兩者之間的聯(lián)系,實現(xiàn)《圓的面積公式》的推導,從而推導出圓面積公式。整節(jié)課,始終圍繞這個主題,從創(chuàng)設生活情境,到提出研究的方向與方法,最后引導學生推導出公式,教師只作為組織者、指導者和參與者,適當進行點撥,使學生不但“學會”,而且“會學”。從而培養(yǎng)了學生的空間想象力,又發(fā)展了學生的邏輯思維推理能力。
4、 注重媒體應用,有意識地突破學生學習知識的難點
利用計算機和動畫課件,輔助課堂教學,有其直觀、形象而又生動的特點,它能使靜態(tài)的畫面動態(tài)化,抽象的內容形象化,同時還不受時間和空間的限制。這節(jié)課恰當?shù)剡\用了多媒體課件演示,充分調動了學生的學習興趣,提高了課堂教學的效率,是其他教學手段無法比擬的。
五、教學環(huán)境及資源準備
用多媒體課件,圓形卡片輔助教學
六、教學過程
1、什么是圓的面積?
(1)涂出一個圓的面積
(2)用自己的話說什么是圓的面積?
2、回憶平行四邊形、三角形、梯形的面積計算公式用什么方法推導的?
3、能不能用剪、拼的方法把圓轉換成我們學過的圖形?
4、學生拿附頁1進行剪拼,看能轉換成我們學過的什么圖形?
5、學生匯報后,課件演示。
6、得出結論:分的等份數(shù)越多,拼出的圖形越接近長方形,無限地分下去,最終拼出的圖形就是長方形、
7、轉化后的長方形的長和寬與原來的圓有什么關系?
小組合作學習,討論以下兩個問題:
1) 轉化后長方形的長相當于什么?寬相當于什么?
2) 你能從計算長方形的面積推導出計算圓面積的公式嗎?
8、匯報討論結果。
9、運用新知識,解決問題。
1)r=5cm,求圓的面積
2)課始主體圖中的問題
總結
小結本課知識,提出要求,希望大家能運用我們今天的所學所得解決我們生活中遇到的更多問題。
總之,這節(jié)課,我力圖從學生已有的知識背景出發(fā),采取觀察操作、合作探究的學習方式,幫助學生再實踐活動中理解概念,掌握知識形成技能,讓課堂充滿活力,讓學生真正成為學習的主人。
【圓的面積教案】相關文章:
《圓的面積》教案11-22
圓的面積教案03-19
圓的面積教案01-15
圓的面積二教案12-21
圓的面積優(yōu)秀教案08-13
小學數(shù)學《圓的面積》教案06-03
圓的面積說課教案02-14
精選圓的面積教案三篇01-12
圓的面積教案八篇12-22
圓的面積教案三篇01-06