高一數學教案15篇
在教學工作者開展教學活動前,就難以避免地要準備教案,教案有助于學生理解并掌握系統的知識。那么大家知道正規的教案是怎么寫的嗎?以下是小編幫大家整理的高一數學教案,歡迎大家分享。
高一數學教案1
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
高一數學教案2
第二十四教時
教材:倍角公式,推導和差化積及積化和差公式
目的:繼續復習鞏固倍角公式,加強對公式靈活運用的訓練;同時,讓學生推導出和差化積和積化和差公式,并對此有所了解。
過程:
一、 復習倍角公式、半角公式和萬能公式的推導過程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教學與測試》P115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的值
解:∵sin cos =
化簡得:
∵ 即
二、 積化和差公式的推導
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
這套公式稱為三角函數積化和差公式,熟悉結構,不要求記憶,它的優點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)
例三、 求證:sin3sin3 + cos3cos3 = cos32
證:左邊 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右邊
原式得證
三、 和差化積公式的推導
若令 + = , = ,則 , 代入得:
這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小結:和差化積,積化和差
五、 作業:《課課練》P3637 例題推薦 13
P3839 例題推薦 13
P40 例題推薦 13
高一數學教案3
一、學習目標:
知識與技能:理解直線與平面、平面與平面平行的性質定理的含義, 并會應用性質解決問題
過程與方法:能應用文字語言、符號語言、圖形語言準確地描述直線與平面、平面與平面的性質定理
情感態度與價值觀:通過自主學習、主動參與、積極探究的學習過程,激發學生學習數學的自信心和積極性,培養學生良好的思維習慣,滲透化歸與轉化的數學思想,體會事物之間相互轉化和理論聯系實際的辯證唯物主義思想方法
二、學習重、難點
學習重點: 直線與平面、平面與平面平行的性質及其應用
學習難點: 將空間問題轉化為平面問題的方法,
三、學法指導及要求:
1、限定45分鐘完成,注意逐字逐句仔細審題,認真思考、獨立規范作答,不會的先繞過,做好記號。
2、把學案中自己易忘、易出錯的知識點和疑難問題以及解題方法規律,及時整理在解題本,多復習記憶。3、A:自主學習;B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題
四、知識鏈接:
1.空間直線與直線的位置關系
2.直線與平面的位置關系
3.平面與平面的位置關系
4.直線與平面平行的判定定理的符號表示
5.平面與平面平行的判定定理的符號表示
五、學習過程:
A問題1:
1)如果一條直線與一個平面平行,那么這條直線與這個平面內的直線有哪些位置關系?
(觀察長方體)
2)如果一條直線和一個平面平行,如何在這個平面內做一條直線與已知直線平行?
(可觀察教室內燈管和地面)
A問題2: 一條直線與平面平行,這條直線和這個平面內直線的位置關系有幾種可能?
A問題3:如果一條直線 與平面平行,在什么條件下直線 與平面內的直線平行呢?
由于直線 與平面內的任何直線無公共點,所以過直線 的某一平面,若與平面相交,則直線 就平行于這條交線
B自主探究1:已知: ∥, ,=b。求證: ∥b。
直線與平面平行的性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行
符號語言:
線面平行性質定理作用:證明兩直線平行
思想:線面平行 線線平行
例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經過木料表面ABCD 內的一點P和棱BC將木料鋸開,應怎樣畫線?(2)所畫的線和面AC有什么關系?
例2:已知平面外的兩條平行直線中的一條平行于這個平面,求證:另一條也平行于這個平面。
問題5:兩個平面平行,那么其中一個平面內的直線與另一平面有什么樣的關系?兩個平面平行,那么其中一個平面內的直線與另一平面內的直線有何關系?
自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b
平面與平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行
符號語言:
面面平行性質定理作用:證明兩直線平行
思想:面面平行 線線平行
例3 求證:夾在兩個平行平面間的平行線段相等
六、達標檢測:
A1.61頁練習
A2.下列判斷正確的是( )
A. ∥, ,則 ∥b B. =P,b ,則 與b不平行
C. ,則a∥ D. ∥,b∥,則 ∥b
B3.直線 ∥平面,P,過點P平行于 的直線( )
A.只有一條,不在平面內 B.有無數條,不一定在內
C.只有一條,且在平面內 D.有無數條,一定在內
B4.下列命題錯誤的是 ( )
A. 平行于同一條直線的兩個平面平行或相交
B. 平行于同一個平面的兩個平面平行
C. 平行于同一條直線的兩條直線平行
D. 平行于同一個平面的兩條直線平行或相交
B5. 平行四邊形EFGH的四個頂點E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )
A. EH∥BD,BD不平行與FG
B. FG∥BD,EH不平行于BD
C. EH∥BD,FG∥BD
D. 以上都不對
B6.若直線 ∥b, ∥平面,則直線b與平面的位置關系是
B7一個平面上有兩點到另一個平面的距離相等,則這兩個平面
七、小結與反思:
高一數學教案4
目標:
1.讓學生熟練掌握二次函數的圖象,并會判斷一元二次方程根的存在性及根的個數 ;
2.讓學生了解函數的零點與方程根的聯系 ;
3.讓學生認識到函數的圖象及基本性質(特別是單調性)在確定函數零點中的作用 ;
4。培養學生動手操作的能力 。
二、教學重點、難點
重點:零點的概念及存在性的判定;
難點:零點的確定。
三、復習引入
例1:判斷方程 x2-x-6=0 解的存在。
分析:考察函數f(x)= x2-x-6, 其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數f(x)的圖像是連續曲線,因此,
點B (0,-6)與點C(4,6)之間的那部分曲線
必然穿過x軸,即在區間(0,4)內至少有點
X1 使f(X1)=0;同樣,在區間(-4,0) 內也至
少有點X2,使得f( X2)=0,而方程至多有兩
個解,所以在(-4,0),(0,4)內各有一解
定義:對于函數y=f(x),我們把使f(x)=0的實數 x叫函數y=f(x)的零點
抽象概括
y=f(x)的圖像與x軸的交點的橫坐標叫做該函數的零點,即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在 (a,b)內至少有一個實數解。
f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點
所以求方程f(x)=0的根實際上也是求函數y=f(x)的零點
注意:1、這里所說若f(a)f(b)0,則在區間(a,b)內方程f(x)=0至少有一個實數解指出了方程f(x)=0的實數解的存在性,并不能判斷具體有多少個解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數解;
3、我們所研究的大部分函數,其圖像都是連續的曲線;
4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少條件在[a,b]上是連續曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。
四、知識應用
例2:已知f(x)=3x-x2 ,問方程f(x)=0在區間[-1,0]內沒有實數解?為什么?
解:f(x)=3x-x2的圖像是連續曲線, 因為
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在區間[-1,0]內有零點,即f(x)=0在區間[-1,0]內有實數解
練習:求函數f(x)=lnx+2x-6 有沒有零點?
例3 判定(x-2)(x-5)=1有兩個相異的實數解,且有一個大于5,一個小于2。
解:考慮函數f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在( -,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數解,且一個大于5,一個小于2。
練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。
五、課后作業
p133第2,3題
高一數學教案5
學習目標 1.函數奇偶性的概念
2.由函數圖象研究函數的奇偶性
3.函數奇偶性的判斷
重點:能運用函數奇偶性的定義判斷函數的奇偶性
難點:理解函數的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、 畫出函數 ,與 的圖像;并觀察兩個函數圖像的對稱性。
2、 求出 , 時的函數值,寫出 , 。
結論: 。
3、 奇函數:___________________________________________________
4、 偶函數:______________________________________________________
【概念深化】
(1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。
(2)、奇函數偶函數的定義域關于原點對稱。
5、奇函數與偶函數圖像的對稱性:
如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。
如果一個函數是偶函數,則這個函數的圖像是以 軸為對稱軸的__________。反之,如果一個函數的圖像是關于 軸對稱,則這個函數是___________。
6. 根據函數的奇偶性,函數可以分為____________________________________.
題型一:判定函數的奇偶性。
例1、判斷下列函數的奇偶性:
(1) (2) (3)
(4) (5)
練習:教材第49頁,練習A第1題
總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?
題型二:利用奇偶性求函數解析式
例2:若f(x)是定義在R上的奇函數,當x0時,f(x)=x(1-x),求當 時f(x)的解析式。
練習:若f(x)是定義在R上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數集 上的奇函數 滿足:當x0時, ,求 的表達式
題型三:利用奇偶性作函數圖像
例3 研究函數 的性質并作出它的圖像
練習:教材第49練習A第3,4,5題,練習B第1,2題
當堂檢測
1 已知 是定義在R上的奇函數,則( D )
A. B. C. D.
2 如果偶函數 在區間 上是減函數,且最大值為7,那么 在區間 上是( B )
A. 增函數且最小值為-7 B. 增函數且最大值為7
C. 減函數且最小值為-7 D. 減函數且最大值為7
3 函數 是定義在區間 上的偶函數,且 ,則下列各式一定成立的是(C )
A. B. C. D.
4 已知函數 為奇函數,若 ,則 -1
5 若 是偶函數,則 的單調增區間是
6 下列函數中不是偶函數的是(D )
A B C D
7 設f(x)是R上的偶函數,切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函數 的圖像必經過點( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函數 為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )
A 0 B 1 C 2 D 4
10 設f(x)是定義在R上的奇函數,且x0時,f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數,且f(3)_f(-1)
12.解答題
用定義判斷函數 的奇偶性。
13定義證明函數的奇偶性
已知函數 在區間D上是奇函數,函數 在區間D上是偶函數,求證: 是奇函數
14利用函數的奇偶性求函數的解析式:
已知分段函數 是奇函數,當 時的解析式為 ,求這個函數在區間 上的解析表達式。
高一數學教案6
案例背景:
對數函數是函數中又一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.
案例敘述:
(一).創設情境
(師):前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.
反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.
(提問):什么是指數函數?指數函數存在反函數嗎?
(學生): 是指數函數,它是存在反函數的.
(師):求反函數的步驟
(由一個學生口答求反函數的過程):
由 得 .又 的值域為 ,
所求反函數為 .
(師):那么我們今天就是研究指數函數的反函數-----對數函數.
(二)新課
1.(板書) 定義:函數 的反函數 叫做對數函數.
(師):由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?
(教師提示學生從反函數的三定與三反去認識,學生自主探究,合作交流)
(學生)對數函數的定義域為 ,對數函數的值域為 ,且底數 就是指數函數中的 ,故有著相同的限制條件 .
(在此基礎上,我們將一起來研究對數函數的圖像與性質.)
2.研究對數函數的圖像與性質
(提問)用什么方法來畫函數圖像?
(學生1)利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.
(學生2)用列表描點法也是可以的。
請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時,要求學生做到:
(1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).
(2) 畫出直線 .
(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:
教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內,如圖:
然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)
3. 性質
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于 軸的右側.
(3)圖像恒過(1,0)
(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.
(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的
當 時,在 上是減函數,即圖像是下降的.
之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:
當 時,有 ;當 時,有 .
學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)
對圖像和性質有了一定的了解后,一起來看看它們的應用.
(三).簡單應用
1. 研究相關函數的性質
例1. 求下列函數的定義域:
(1) (2) (3)
先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.
2. 利用單調性比較大小
例2. 比較下列各組數的大小
(1) 與 ; (2) 與 ;
(3) 與 ; (4) 與 .
讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.
三.拓展練習
練習:若 ,求 的取值范圍.
四.小結及作業
案例反思:
本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
高一數學教案7
教材分析:函數是描述客觀世界變化規律的重要數學模型.高中階段不僅把函數看成變量之間的依賴關系,同時還用集合與對應的語言刻畫函數,高中階段更注重函數模型化的思想.
教學目的:
(1)通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;
(2)了解構成函數的要素;
(3)會求一些簡單函數的定義域和值域;
(4)能夠正確使用“區間”的符號表示某些函數的定義域;
教學重點:理解函數的模型化思想,用合與對應的語言來刻畫函數;
教學難點:符號“y=f(x)”的含義,函數定義域和值域的區間表示;
教學過程:
一、引入課題
1.復習初中所學函數的概念,強調函數的模型化思想;
2.閱讀課本引例,體會函數是描述客觀事物變化規律的數學模型的思想:
(1)炮彈的射高與時間的變化關系問題;
(2)南極臭氧空洞面積與時間的變化關系問題;
(3)“八五”計劃以來我國城鎮居民的恩格爾系數與時間的變化關系問題
備用實例:
我國xxxx年4月份非典疫情統計:
日期222324252627282930
新增確診病例數1061058910311312698152101
3.引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;
4.根據初中所學函數的概念,判斷各個實例中的兩個變量間的關系是否是函數關系.
二、新課教學
(一)函數的有關概念
1.函數的概念:
設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range).
注意:
○1“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
○2函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.
2.構成函數的三要素:
定義域、對應關系和值域
3.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;
(2)無窮區間;
(3)區間的數軸表示.
4.一次函數、二次函數、反比例函數的定義域和值域討論
(由學生完成,師生共同分析講評)
(二)典型例題
1.求函數定義域
課本P20例1
解:(略)
說明:
○1函數的定義域通常由問題的實際背景確定,如果課前三個實例;
○2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;
○3函數的定義域、值域要寫成集合或區間的形式.
鞏固練習:課本P22第1題
2.判斷兩個函數是否為同一函數
課本P21例2
解:(略)
說明:
○1構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)
○2兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。
鞏固練習:
○1課本P22第2題
○2判斷下列函數f(x)與g(x)是否表示同一個函數,說明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)課堂練習
求下列函數的定義域
(1)
(2)
(3)
(4)
(5)
(6)
三、歸納小結,強化思想
從具體實例引入了函數的的概念,用集合與對應的語言描述了函數的定義及其相關概念,介紹了求函數定義域和判斷同一函數的典型題目,引入了區間的概念來表示集合。
四、作業布置
課本P28習題1.2(A組)第1—7題(B組)第1題
高一數學教案8
教學目標
1.理解等比數列的概念,掌握等比數列的通項公式,并能運用公式解決簡單的問題.
(1)正確理解等比數列的定義,了解公比的概念,明確一個數列是等比數列的限定條件,能根據定義判斷一個數列是等比數列,了解等比中項的概念;
(2)正確認識使用等比數列的表示法,能靈活運用通項公式求等比數列的首項、公比、項數及指定的項;
(3)通過通項公式認識等比數列的性質,能解決某些實際問題.
2.通過對等比數列的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.
3.通過對等比數列概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.
教學建議
教材分析
(1)知識結構
等比數列是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出等比數列的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.
(2)重點、難點分析
教學重點是等比數列的定義和對通項公式的認識與應用,教學難點在于等比數列通項公式的推導和運用.
①與等差數列一樣,等比數列也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出等比數列的特性,這些是教學的重點.
②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.
③對等差數列、等比數列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學建議
(1)建議本節課分兩課時,一節課為等比數列的概念,一節課為等比數列通項公式的應用.
(2)等比數列概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到等比數列的定義.也可將幾個等差數列和幾個等比數列混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數列的定義.
(3)根據定義讓學生分析等比數列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
(4)對比等差數列的表示法,由學生歸納等比數列的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.
(5)由于有了等差數列的研究經驗,等比數列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.
(6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.
教學設計示例
課題:等比數列的概念
教學目標
1.通過教學使學生理解等比數列的概念,推導并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.
3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.
教學重點,難點
重點、難點是等比數列的定義的歸納及通項公式的推導.
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列).
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列. (這里播放變形蟲分裂的多媒體軟件的第一步)
等比數列(板書)
1.等比數列的定義(板書)
根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出等比數列的定義,標注出重點詞語.
請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當 時,數列 既是等差又是等比數列,當 時,它只是等差數列,而不是等比數列.教師追問理由,引出對等比數列的認識:
2.對定義的認識(板書)
(1)等比數列的首項不為0;
(2)等比數列的每一項都不為0,即 ;
問題:一個數列各項均不為0是這個數列為等比數列的什么條件?
(3)公比不為0.
用數學式子表示等比數列的定義.
是等比數列 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是等比數列 ?為什么不能?
式子 給出了數列第 項與第 項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.等比數列的通項公式(板書)
問題:用 和 表示第 項 .
①不完全歸納法
②疊乘法
,… , ,這 個式子相乘得 ,所以 .
(板書)(1)等比數列的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
(板書)(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).
這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.
三、小結
1.本節課研究了等比數列的概念,得到了通項公式;
2.注意在研究內容與方法上要與等差數列相類比;
3.用方程的思想認識通項公式,并加以應用.
高一數學教案9
學習是一個潛移默化、厚積薄發的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
教學目標
1.使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項.
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的.
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式.
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項.
2.通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣.
教學建議
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等.
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系.在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法.
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等.如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系.
(5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的.
上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
高一數學教案10
一:【課前預習】
(一):【知識梳理】
1.直角三角形的.邊角關系(如圖)
(1)邊的關系(勾股定理):AC2+BC2=AB2;
(2)角的關系:B=
(3)邊角關系:
①:
②:銳角三角函數:
A的正弦= ;
A的余弦= ,
A的正切=
注:三角函數值是一個比值.
2.特殊角的三角函數值.
3.三角函數的關系
(1) 互為余角的三角函數關系.
sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA
(2) 同角的三角函數關系.
平方關系:sin2 A+cos2A=l
4.三角函數的大小比較
①正弦、正切是增函數.三角函數值隨角的增大而增大,隨角的減小而減小.
②余弦是減函數.三角函數值隨角的增大而減小,隨角的減小而增大。
(二):【課前練習】
1.等腰直角三角形一個銳角的余弦為( )
A. D.l
2.點M(tan60,-cos60)關于x軸的對稱點M的坐標是( )
3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )
4.已知A為銳角,且cosA0.5,那么( )
A.060 B.6090 C.030 D.3090
二:【經典考題剖析】
1.如圖,在Rt△ABC中,C=90,A=45,點D在AC上,BDC=60,AD=l,求BD、DC的長.
2.先化簡,再求其值, 其中x=tan45-cos30
3. 計算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○
4.比較大小(在空格處填寫或或=)
若=45○,則sin________cos
若45○,則sin cos
若45,則 sin cos.
5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數的增大,它的正弦值和余弦值變化的規律;
⑵根據你探索到的規律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.
三:【課后訓練】
1. 2sin60-cos30tan45的結果為( )
A. D.0
2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )
A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形
3.如圖,在平面直角坐標系中,已知A(3,0)點B(0,-4),則cosOAB等于__________
4.cos2+sin242○ =1,則銳角=______.
5.在下列不等式中,錯誤的是( )
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是()
7.如圖所示,在菱形ABCD中,AEBC于 E點,EC=1,B=30,求菱形ABCD的周長.
8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值
9.如圖 ,某風景區的湖心島有一涼亭A,其正東方向有一棵大樹B,小明想測量A/B之間的距離,他從湖邊的C處測得A在北偏西45方向上,測得B在北偏東32方向上,且量得B、C之間的距離為100米,根據上述測量結果,請你幫小明計算A山之間的距離是多少?(結果精確至1米.參考數據:sin32○0.5299,cos32○0.8480)
10.某住宅小區修了一個塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測得點A的仰角為45,然后向塔方向前進8米到達D處,在D處測得點A的仰角為60,求建筑物的高度.(精確0.1米)
高一數學教案11
本文題目:高一數學教案:函數的奇偶性
課題:1.3.2函數的奇偶性
一、三維目標:
知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。
過程與方法:通過設置問題情境培養學生判斷、推斷的能力。
情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操. 通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的思維品質。
二、學習重、難點:
重點:函數的奇偶性的概念。
難點:函數奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2.分別畫出函數f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。
五、學習過程:
函數的奇偶性:
(1)對于函數 ,其定義域關于原點對稱:
如果______________________________________,那么函數 為奇函數;
如果______________________________________,那么函數 為偶函數。
(2)奇函數的圖象關于__________對稱,偶函數的圖象關于_________對稱。
(3)奇函數在對稱區間的增減性 ;偶函數在對稱區間的增減性 。
六、達標訓練:
A1、判斷下列函數的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數 ( )是偶函數,則b=___________ .
B3、已知 ,其中 為常數,若 ,則
_______ .
B4、若函數 是定義在R上的奇函數,則函數 的圖象關于 ( )
(A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對
B5、如果定義在區間 上的函數 為奇函數,則 =_____ .
C6、若函數 是定義在R上的奇函數,且當 時, ,那么當
時, =_______ .
D7、設 是 上的奇函數, ,當 時, ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數 ,則常數 ____ , _____ .
七、學習小結:
本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。
八、課后反思:
高一數學教案12
一、本課數學內容的本質、地位、作用分析
普通高中課標教材必修1共安排了三章內容,第一章是《集合與函數的概念》,第二章是《基本初等函數(Ⅰ)》,第三章是《函數的應用》。第三章編排了兩塊內容,第一部分是函數與方程,第二部分是函數模型及其應用。本節課方程的根與函數的零點,正是在這種建立和運用函數模型的大背景下展開的。本節課的主要教學內容是函數零點的定義和函數零點存在的判定依據,這兩者顯然是為下節“用二分法求方程近似解”這一“函數的應用”服務的,同時也為后續學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節意義重大。
函數在數學中占據著不可替代的核心地位,根本原因之一在于函數與其他知識具有廣泛的聯系,而函數的零點就是其中的一個鏈結點,它從不同的角度,將數與形,函數與方程有機地聯系在一起。方程本身就是函數的一部分,用函數的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯系的觀點解決問題,為后面函數與不等式和數列等其他知識的聯系奠定基礎。
二、教學目標分析
本節內容包含三大知識點:
一、函數零點的定義;
二、方程的根與函數零點的等價關系;
三、零點存在性定理。
結合本節課引入三大知識點的方法,設定本節課的知識與技能目標如下:
1.結合方程根的幾何意義,理解函數零點的定義;
2.結合零點定義的探究,掌握方程的實根與其相應函數零點之間的等價關系;
3.結合幾類基本初等函數的圖象特征,掌握判斷函數的零點個數和所在區間的方法.
本節課是學生在學習了函數的性質,具備了初步的數形結合知識的基礎上,通過對特殊函數圖象的分析進行展開的,是培養學生“化歸與轉化思想”,“數形結合思想”,“函數與方程思想”的優質載體。
結合本節課教學主線的設計,設定本節課的過程與方法目標如下:
1.通過化歸與轉化思想的引導,培養學生從已有認知結構出發,尋求解決棘手問題方法的習慣;
2.通過數形結合思想的滲透,培養學生主動應用數學思想的意識;
3.通過習題與探究知識的相關性設置,引導學生深入探究得出判斷函數的零點個數和所在區間的方法;
4.通過對函數與方程思想的不斷剖析,促進學生對知識靈活應用的能力。
由于本節課將以教師引導,學生探究為主體形式,故設定本節課的情感、態度與價值觀目標如下:
1.讓學生體驗化歸與轉化、數形結合、函數與方程這三大數學思想在解決數學問題時的意義與價值;
2.培養學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。
3.使學生感受學習、探索發現的樂趣與成功感。
三、教學問題診斷
學生具備的認知基礎:
1.基本初等函數的圖象和性質;
2.一元二次方程的根和相應函數圖象與x軸的聯系;
3.將數與形相結合轉化的意識。
學生欠缺的實際能力:
1.主動應用數形結合思想解決問題的意識還不強;
2.將未知問題已知化,將復雜問題簡單化的化歸意識淡薄;
3.從直觀到抽象的概括總結能力還不夠;
4.概念的內涵與外延的探究意識有待提高。
對本節課的教學,教材是利用一組一元二次方程和二次函數的關系來引入函數零點的。這樣處理,主要是想讓學生在原有二次函數的認知基礎上,使其知識得到自然的發生發展。理解了像二次函數這樣簡單的函數零點,再來理解其他復雜的函數零點就會容易一些。但學生對如何解一元二次方程以及二次函數的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數零點的必要性,理解不了方程根存在的本質原因是零點的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數y=f(x)在(a,b)內有零點的一種條件的,如果不能有效地對該過程進行引導,容易出現學生被動接受,盲目記憶的結果,而喪失了對學生應用數學思想方法的意識進行培養的機會。
教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數并未多做說明,這就要求教師對該定理的內涵和外延要有清晰的把握,引導學生探究出只存在一個零點的條件,否則學生對定理的內容很容易心存疑慮。
四、本節課的教法特點以及預期效果分析
本節課教法的幾大特點總結如下:
1.以問題為主線貫穿始終;
2.精心設置引導性的語言放手讓學生探究;
3.注重在引導學生探究問題解法的過程中滲透數學思想;
4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結,進行探究階段性成果的應用。
由于所設置的主線問題具有很高的探究價值,所以預期學生熱情會很高,積極性調動起來,那整節課才能活起來;
由于為了更好地組織學生探究所設置的引導性語言,重在去挖掘學生內心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;
因為在探究過程中不斷滲透數學思想,學生對親身經歷的解題方法就會有更深的體會,主動應用數學思想的意識在上升,對于主線問題也應該可以迎刃而解;
因為在探究過程中引入新知識點,學生對新知識產生的必要性會有更深刻的體會和認識,同時在新知識產生后,又適時地加以應用,學生對新知識的應用能力不斷提高。
高一數學教案13
一、教學目標
1.知識與技能
(1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;
(2)體會程序化解決問題的思想,為算法的學習作準備。
2.過程與方法
(1)讓學生在求解方程近似解的實例中感知二分發思想;
(2)讓學生歸納整理本節所學的知識。
3.情感、態度與價值觀
①體會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數學;
②培養學生認真、耐心、嚴謹的數學品質。
二、 教學重點、難點
重點:用二分法求解函數f(x)的零點近似值的步驟。
難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?
三、 學法與教學用具
1.想-想。
2.教學用具:計算器。
四、教學設想
(一)、創設情景,揭示課題
提出問題:
(1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯系函數的零點與相應方程根的關系,能否利用函數的有關知識來求她的根呢?
(2)通過前面一節課的學習,函數f(x)=㏑x+2x-6在區間內有零點;進一步的問題是,如何找到這個零點呢?
(二)、研討新知
一個直觀的想法是:如果能夠將零點所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。
取區間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區間(2.5,3)內;
再取區間(2.5,3)的中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內;
由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復相同的步驟后,在一定的精確度下,將所得到的零點所在區間上任意的一點作為零點的近似值,特別地可以將區間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。
這種求零點近似值的方法叫做二分法。
1.師:引導學生仔細體會上邊的這段文字,結合課本上的相關部分,感悟其中的思想方法.
生:認真理解二分法的函數思想,并根據課本上二分法的一般步驟,探索其求法。
2.為什么由︱a - b ︳<便可判斷零點的近似值為a(或b)?
先由學生思考幾分鐘,然后作如下說明:
設函數零點為x0,則a<x0<b,則:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作為零點x0的近似值都達到了給定的精確度。
(三)、鞏固深化,發展思維
1.學生在老師引導啟發下完成下面的例題
例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)
問題:原方程的近似解和哪個函數的零點是等價的?
師:引導學生在方程右邊的常數移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。
生:借助計算機或計算器畫出函數的圖象,結合圖象確定零點所在的區間,然后利用二分法求解.
(四)、歸納整理,整體認識
在師生的互動中,讓學生了解或體會下列問題:
(1)本節我們學過哪些知識內容?
(2)你認為學習“二分法”有什么意義?
(3)在本節課的學習過程中,還有哪些不明白的地方?
(五)、布置作業
P92習題3.1A組第四題,第五題。
高一數學教案14
一、教材分析
1、 教材的地位和作用:
函數是數學中最主要的概念之一,而函數概念貫穿在中學數學的始終,概念是數學的基礎,概念性強是函數理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中對函數概念理解的程度會直接影響其它知識的學習,所以函數的第一課時非常的重要。
2、 教學目標及確立的依據:
教學目標:
(1) 教學知識目標:了解對應和映射概念、理解函數的近代定義、函數三要素,以及對函數抽象符號的理解。
(2) 能力訓練目標:通過教學培養的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯系和相互制約的辯證唯物主義觀點。
教學目標確立的依據:
函數是數學中最主要的概念之一,而函數概念貫穿整個中學數學,如:數、式、方程、函數、排列組合、數列極限等都是以函數為中心的代數。加強函數教學可幫助學好其他的內容。而掌握好函數的概念是學好函數的基石。
3、教學重點難點及確立的依據:
教學重點:映射的概念,函數的近代概念、函數的三要素及函數符號的理解。
教學難點:映射的概念,函數近代概念,及函數符號的理解。
重點難點確立的依據:
映射的概念和函數的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來有一種“函數熱”的趨勢,所以本節的重點難點必然落在映射的概念和函數的近代定義及函數符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關鍵。 函數的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數概念的理解帶來更大的困難。為解決這難點,主要是從實際出發調動學生的學習熱情與參與意識,運用引導對比的手法,啟發引導學生進行有目的的反復比較幾個概念的異同,使真正對函數的概念有很準確的認識。
三、教學方法和學法
教學方法:講授為主,自主預習為輔。
依據是:因為以新的觀點認識函數概念及函數符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為能學好后面的知識打下堅實的基礎。
學法:四、教學程序
一、課程導入
通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯系在一起。
例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學生熟悉的數集的對應關系引導學生歸納它們的共同性質(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應法則 f。進一步引導判斷一個從a到b的對應是否為映射的關鍵是看a中的任意一個元素通過對應法則f在b中是否有唯一確定的元素與之對應。
(2)鞏固練習課本52頁第八題。
此練習能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。
例1. 給出學生初中學過的函數的傳統定義和幾個簡單的一次、二次函數,通過畫圖表示這些函數的對應關系,引導發現它們是特殊的映射進而給出函數的近代定義(設a、b是兩個非空集合,如果按照某種對應法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應則這樣的對應叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{ f(x):x∈a}叫做函數的值域。
并把函數的近代定義與映射定義比較使認識到函數與映射的區別與聯系。(函數是非空數集到非空數集的映射)。
再以讓判斷的方式給出以下關于函數近代定義的注意事項:2. 函數是非空數集到非空數集的映射。
3. f表示對應關系,在不同的函數中f的具體含義不一樣。
4. f(x)是一個符號,不表示f與x的乘積,而表示x經過f作用后的結果。
5. 集合a中的數的任意性,集合b中數的唯一性。
66. “f:a→b”表示一個函數有三要素:法則f(是核心),定義域a(要優先),值域c(上函數值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y的取值范圍的對應是“多對一”是從非空數集到非空數集的映射,所以它是函數。
[注]:引導從集合,映射的觀點認識函數的定義。
四.課時小結:
1. 映射的定義。
2. 函數的近代定義。
3. 函數的三要素及符號的正確理解和應用。
4. 函數近代定義的五大注意點。
五.課后作業及板書設計
書本p51 習題2.1的1、2寫在書上3、4、5上交。
預習函數三要素的定義域,并能求簡單函數的定義域。
函數(一)
一、映射:
2.函數近代定義: 例題練習
二、函數的定義 [注]1—5
1.函數傳統定義
三、作業:
高一數學教案15
教學目的:
(1)使學生初步理解集合的概念,知道常用數集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
內容分析:
集合是中學數學的一個重要的基本概念 在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數中用到的有數集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎 例如,下一章講函數的概念與性質,就離不開集合與邏輯。
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節課主要學習全章的引言和集合的基本概念 學習引言是引發學生的學習興趣,使學生認識學習本章的意義 本節課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1、簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;
2、教材中的章頭引言;
3、集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合 記作N,
(2)正整數集:非負整數集內排除0的集 記作N*或N+
(3)整數集:全體整數的集合 記作Z ,
(4)有理數集:全體有理數的集合 記作Q ,
(5)實數集:全體實數的集合 記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集 記作N*或N+ Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數 (不確定)
(2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么 可能取的值組成集合的元素是_—2,0,2__
4、由實數x,-x,|x|, 所組成的集合,最多含( A )
(A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數,求證:
(1) 當x∈N時, x∈G;
(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數,
∴ = 不一定屬于集合G
四、小結:本節課學習了以下內容:
1、集合的有關概念:(集合、元素、屬于、不屬于)
2、集合元素的性質:確定性,互異性,無序性
3、常用數集的定義及記法
【高一數學教案】相關文章:
高一數學教案06-20
高一必修四數學教案04-13
高一必修五數學教案04-10
人教版高一數學教案07-30
上海高一數學教案07-30
高一數學教案設計04-10
高一數學教案:函數單調性04-08
高一數學教案:對數函數04-08
高一數學教案:變量與函數的概念04-08
《集合含義與表示》高一數學教案07-30