因式分解教案
在教學工作者實際的教學活動中,很有必要精心設計一份教案,教案是教學藍圖,可以有效提高教學效率。那么你有了解過教案嗎?以下是小編為大家整理的因式分解教案,歡迎閱讀與收藏。
因式分解教案1
(一)學習目標
1、會用因式分解進行簡單的多項式除法
2、會用因式分解解簡單的方程
(二)學習重難點重點:因式分解在多項式除法和解方程中兩方面的應用。
難點:應用因式分解解方程涉及到的較多的推理過程是本節課的難點。
(三)教學過程設計
看一看
1.應用因式分解進行多項式除法.多項式除以多項式的一般步驟:
①________________②__________
2.應用因式分解解簡單的一元二次方程.
依據__________,一般步驟:__________
做一做
1.計算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成課后練習題
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________
(四)預習檢測
1.計算:
2.先請同學們思考、討論以下問題:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列結論中哪個正確( )
①A、B同時都為零,即A=0,
且B=0;
②A、B中至少有一個為零,即A=0,或B=0;
(五)應用探究
1.解下列方程
2.化簡求值:已知x-y=-3,-x+3y=2,求代數式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清練習
1.計算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
因式分解教案2
教學目標
1.知識與技能
了解因式分解的意義,以及它與整式乘法的關系.
2.過程與方法
經歷從分解因數到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態度與價值觀
在探索因式分解的方法的活動中,培養學生有條理的思考、表達與交流的能力,培養積極的進取意識,體會數學知識的內在含義與價值.
重、難點與關鍵
1.重點:了解因式分解的意義,感受其作用.
2.難點:整式乘法與因式分解之間的關系.
3.關鍵:通過分解因數引入到分解因式,并進行類比,加深理解.
教學方法
采用“激趣導學”的教學方法.
教學過程
一、創設情境,激趣導入
【問題牽引】
請同學們探究下面的2個問題:
問題1:720能被哪些數整除?談談你的想法.
問題2:當a=102,b=98時,求a2-b2的值.
二、豐富聯想,展示思維
探索:你會做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.
三、小組活動,共同探究
【問題牽引】
(1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括號里,填上適當的項,使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、隨堂練習,鞏固深化
課本練習.
【探研時空】計算:993-99能被100整除嗎?
五、課堂總結,發展潛能
由學生自己進行小結,教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運算有何區別?
六、布置作業,專題突破
選用補充作業.
板書設計
15.4.1 因式分解
1、因式分解 例:
練習:
15.4.2 提公因式法
教學目標
1.知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
2.過程與方法
使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解.
3.情感、態度與價值觀
培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其應用價值.
重、難點與關鍵
1.重點:掌握用提公因式法把多項式分解因式.
2.難點:正確地確定多項式的最大公因式.
3.關鍵:提公因式法關鍵是如何找公因式.方法是:一看系數、二看字母.公因式的系數取各項系數的最大公約數;字母取各項相同的字母,并且各字母的指數取最低次冪.
教學方法
采用“啟發式”教學方法.
教學過程
一、回顧交流,導入新知
【復習交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數、二看字母,公因式的系數取各項系數的最大公約數;字母取各項相同的字母,并且各字母的指數取最低次冪.
三、范例學習,應用所學
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.
【教師活動】引導學生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習,鞏固深化
課本P167練習第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結,發展潛能
1.利用提公因式法因式分解,關鍵是找準最大公因式.在找最大公因式時應注意:(1)系數要找最大公約數;(2)字母要找各項都有的;(3)指數要找最低次冪.
2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業,專題突破
課本P170習題15.4第1、4(1)、6題.
板書設計
15.4.2 提公因式法
1、提公因式法 例:
練習:
15.4.3 公式法(一)
教學目標
1.知識與技能
會應用平方差公式進行因式分解,發展學生推理能力.
2.過程與方法
經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性.
3.情感、態度與價值觀
培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值.
重、難點與關鍵
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式).
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習,鞏固深化
課本P168練習第1、2題.
【探研時空】
1.求證:當n是正整數時,n3-n的值一定是6的倍數.
2.試證兩個連續偶數的平方差能被一個奇數整除.連續偶數的平方差能被一個奇數整除.
四、課堂總結,發展潛能
運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數和項數,然后再確定公式.如果多項式是二項式,通常考慮應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
五、布置作業,專題突破
課本P171習題15.4第2、4(2)、11題.
板書設計
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習:
15.4.3 公式法(二)
教學目標
1.知識與技能
領會運用完全平方公式進行因式分解的方法,發展推理能力.
2.過程與方法
經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態度與價值觀
培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.
重、難點與關鍵
1.重點:理解完全平方公式因式分解,并學會應用.
2.難點:靈活地應用公式法進行因式分解.
3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節課內容.
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
因式分解教案3
整式乘除與因式分解
一.回顧知識點
1、主要知識回顧:
冪的運算性質:
aman=am+n(m、n為正整數)
同底數冪相乘,底數不變,指數相加.
=amn(m、n為正整數)
冪的乘方,底數不變,指數相乘.
(n為正整數)
積的乘方等于各因式乘方的積.
=am-n(a≠0,m、n都是正整數,且m>n)
同底數冪相除,底數不變,指數相減.
零指數冪的概念:
a0=1(a≠0)
任何一個不等于零的數的零指數冪都等于l.
負指數冪的概念:
a-p=(a≠0,p是正整數)
任何一個不等于零的數的-p(p是正整數)指數冪,等于這個數的p指數冪的倒數.
也可表示為:(m≠0,n≠0,p為正整數)
單項式的乘法法則:
單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式.
單項式與多項式的乘法法則:
單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加.
多項式與多項式的乘法法則:
多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.
單項式的除法法則:
單項式相除,把系數、同底數冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數作為商的一個因式.
多項式除以單項式的法則:
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字語言敘述:兩個數的和與這兩個數的差相乘,等于這兩個數的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個數的和(或差)的平方等于這兩個數的平方和加上(或減去)這兩個數的積的2倍.
3、因式分解:
因式分解的定義.
把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.
掌握其定義應注意以下幾點:
(1)分解對象是多項式,分解結果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.
弄清因式分解與整式乘法的內在的關系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關鍵是找出公因式,公因式的構成一般情況下有三部分:①系數一各項系數的最大公約數;②字母——各項含有的相同字母;③指數——相同字母的最低次數;
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數與原多項式的項數一致,這一點可用來檢驗是否漏項.
(4)注意點:①提取公因式后各因式應該是最簡形式,即分解到“底”;②如果多項式的第一項的系數是負的,一般要提出“-”號,使括號內的第一項的系數是正的.
2、公式法
運用公式法分解因式的實質是把整式中的乘法公式反過來使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
因式分解教案4
教學目標:
1、進一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當的方法進行因式分解4、應用因式分解來解決一些實際問題
5、體驗應用知識解決問題的樂趣
教學重點:靈活運用因式分解解決問題
教學難點:靈活運用恰當的因式分解的方法,拓展練習2、3
教學過程:
一、創設情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、規律總結(教師講解):分解因式與整式乘法是互逆過程。
分解因式要注意以下幾點:
(1)。分解的對象必須是多項式。
(2)。分解的結果一定是幾個整式的乘積的形式。
(3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓練
教學引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規,我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]
鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。
講授新課
找一兩個學生表述其結論,表述是要注意糾正其語言的規范性。
動畫演示:
場景二:正方形的性質
師:這些性質里那些是矩形的性質?
[學生活動:尋找矩形性質。]
動畫演示:
場景三:矩形的性質
師:同樣在這些性質里尋找屬于菱形的性質。
[學生活動;尋找菱形性質。]
動畫演示:
場景四:菱形的性質
師:這說明正方形具有矩形和菱形的全部性質。
及時提出問題,引導學生進行思考。
師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]
師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。
學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。
試一試把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識應用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數整除?
五、拓展應用
1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數,證明(2n+1)2—(2n—1)2是8的倍數。
五、課堂小結
今天你對因式分解又有哪些新的認識?
因式分解教案5
知識點:
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
教學目標:
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查重難點與常見題型:
考查因式分解能力,在中考試題中,因式分解出現的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
教學過程:
因式分解知識點
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項式
其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用
寫出結果。
(3)十字相乘法
對于二次項系數為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根X1,X2,那么
2、教學實例:學案示例
3、課堂練習:學案作業
4、課堂:
5、板書:
6、課堂作業:學案作業
7、教學反思:
因式分解教案6
第十五章 整式的乘除與因式分解
根據定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數.
15.1.2 整式的加減
(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高練習:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?
2、設A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。
3、已知有理數a、b、c在數軸上(0為數軸原點)的對應點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算。
作 業:課本P14習題1.3:1(2)、(3)、(6),2。
《課堂感悟與探究》
因式分解教案7
學習目標
1、學會用平方差公式進行因式法分解
2、學會因式分解的而基本步驟.
學習重難點重點:
用平方差公式進行因式法分解.
難點:
因式分解化簡的過程
自學過程設計教學過程設計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結果為-(x-2y)(x+2y)的多項式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
Xkb1.com預習展示一:
1、下列多項式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
①x4-81y4
②2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網等都需要密碼.有一種因式分解法產生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結果來設置密碼,當取x=9,y=9時,可得一個六位數的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產生的密碼是什么?(寫出一個即可)
拓展提高:
若n為整數,則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。
因式分解教案8
因式分解
教材分析
因式分解是進行代數式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三解函數式的恒等變形帶給了必要的基礎,因此學好因式分解對于代數知識的后續學習,具有相當重要的好處。由于本節課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務必以理解因式分解的概念為前提,所以本節資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法是教學中的難點。
教學目標
認知目標:(1)理解因式分解的概念和好處
(2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。
潛力目標:由學生自行探求解題途徑,培養學生觀察、分析、決定潛力和創新潛力,發展學生智能,深化學生逆向思維潛力和綜合運用潛力。
情感目標:培養學生理解矛盾的對立統一觀點,獨立思考,勇于探索的精神和實事求是的科學態度。
目標制定的思想
1.目標具體化、明確化,從學生實際出發,具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。
2.課堂教學體現潛力立意。
3.寓德育教育于教學之中。
教學方法
1.采用以設疑探究的引課方式,激發學生的求知欲望,提高學生的學習興趣和學習用心性。
2.把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,以設疑——感知——概括——運用為教學程序,充分遵循學生的認知規律,使學生能順利地掌握重點,突破難點,提高潛力。
3.在課堂教學中,引導學生體會知識的發生發展過程,堅持啟發式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現了學生的主動性原則。
4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設了由淺入深、各不相同卻又緊密相關的訓練題目,為學生順利掌握因式分解概念及其與整式乘法關系創造了有利條件。
5.改變傳統言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質量。
教學過程安排
一、提出問題,創設情境
問題:看誰算得快?(計算機出示問題)
(1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
(1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)
(2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)類比小學學過的因數分解概念,(例42=2×3×7④)得出因式分解概念。
板書課題:§7。1因式分解
1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
三、獨立練習,鞏固新知
練習
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解與整式乘法的關系:
因式分解
結合:a2—b2=========(a+b)(a—b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。
結論:因式分解與整式乘法正好相反。
問題:你能利用因式分解與整式乘法正好相反這一關系,舉出幾個因式分解的例子嗎?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學,運用新知:
例:把下列各式分解因式:(計算機演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
練習2:填空:(計算機演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強化訓練,掌握新知:
練習3:把下列各式分解因式:(計算機演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(讓學生上來板演)
六、變式訓練,擴展新知(計算機演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機動題:(填空)x2—8x+m=(x—4),且m=
七、整理知識,構成結構(即課堂小結)
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。
3.利用2中關系,能夠從整式乘法探求因式分解的結果。
4.教學中滲透對立統一,以不變應萬變的辯證唯物主義的思想方法。
八、布置作業
1.作業本(一)中§7。1節
2.選做題:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
評價與反饋
1.透過由學生自己得出因式分解概念及其與整式乘法的關系的結論,了解學生觀察、分析問題的潛力和逆向思維潛力及創新潛力。發現問題,及時反饋。
2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發現和彌補教與學中的遺漏和不足,從而及時調控教與學。
3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創造潛力,及時評價,及時矯正。
4.透過課后作業,了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業,能夠更及時、更準確地了解學生思維發展的狀況,矯正的針對性更強。
5.透過課堂小結,了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當地給予引導和啟迪。
6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應用心捕捉學生在知識掌握、思維發展、潛力培養等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調節教學。
因式分解教案9
一、背景介紹
因式分解是代數式中的重要內容,它與前一章整式和后一章分式聯系極為密切。因式分解的教學是在整式四則運算的基礎上進行的,因式分解方法的理論依據就是多項式乘法的逆變形。它不僅在多項式的除法、簡便運算中有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三角函數式的恒等變形提供了必要的基礎。因此,學好因式分解對于代數知識的后續學習,具有相當重要的意義。
二、教學設計
【教學內容分析】
因式分解的概念是把一個多項式化成幾個整式的積的形式,它是因式分解方法的理論基礎,也是本章中一個重要概念。教材在引入中是結合剪紙拼圖來闡述這一概念的,也可以與小學數學里因數分解的概念類比予以說明。在教學時對因式分解這一概念不宜要求學生一次徹底了解,應該在講授因式分解的三種基本方法時,結合具體例題的分解過程和分解結果,說明這一概念的意義,以達到逐步了解這一概念的教學目的。
【教學目標】
1、認知目標:(1)理解因式分解的概念和意義
(2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。
2、能力目標:由學生自行探求解題途徑,培養學生觀察、分析、判斷能力和創新能力,發展學生智能,深化學生逆向思維能力和綜合運用能力。
3、情感目標:培養學生接受矛盾的對立統一觀點,獨立思考,勇于探索的精神和實事求是的科學態度。
【教學重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。
【教學準備】
實物投影儀、多媒體輔助教學。
【教學過程】
㈠、情境導入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
【初一年級學生活波好動,好表現,爭強好勝。情境導入借助搶答的方式進行,引進競爭機制,可以使學生在參與的過程中提高興趣,并增強競爭意識和探究欲望。】
㈡、探究新知
1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過程,就是學生“口渴”的地方。由此引起學生的求知欲。】
2、觀察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
【利用教師的主導作用,把學生的無意識的觀察轉變為有意識的觀察,同時教師應鼓勵學生大膽描述自己的觀察結果,并及時予以肯定。】
3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)
【讓學生自己概括出所感知的知識內容,有利于學生在實踐中感悟知識的生成過程,培養學生的語言表達能力。】
板書課題:§6.1因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學生繼續觀察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?
(要注意讓學生區分因式分解與整式乘法的區別,防止學生出現在進行因式分解當中,半路又做乘法的錯誤。)
【注重數學知識間的聯系,給學生提供探索與交流的空間,讓學生經歷數學知識的生成過程,由學生發現整式乘法與因式分解的相互關系,培養學生觀察、分析問題的能力和逆向思維能力及創新能力。】
2、因式分解與整式乘法的關系:
因式分解
結合:a2-b2=========(a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。
結論:因式分解與整式乘法的相互關系——相反變形。(多媒體展示學生得出的成果)
㈣、鞏固新知
1、 下列代數式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【針對學生易犯的錯誤,制造認知沖突,讓學生充分暴露錯誤,然后通過分析、討論,達到理解的效果。】
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。
【學生出題熱情、積極性高,因初一學生好表現,因而能激發學生學習興趣,激活學生的思維。】
㈤、應用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習 計算下列各題,并說明你的算法:(請學生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
【進一步拓展學生在數學領域內的視野,增強學生對數學的興趣,使學生從小熱衷于數學的學習和探索。通過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創造能力,及時評價,及時矯正。】
㈦、課堂回顧
今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。
【課堂小結交給學生, 讓學生總結本節課中概念的發現過程,運用概念分析問題的過程,養成學生學習——總結——學習的良好習慣。唯有總結反思,才能控制思維操作,才能促進理解,提高認知水平,從而促進數學觀點的形成和發展,更好地進行知識建構,實現良性循環。】
㈧、布置作業
教科書第153的作業題。
【設計思想】
葉圣陶先生曾說過課堂教學的最高藝術是看學生,而不是看教師,看學生能否在課堂中煥發生命的活力。因此本教學是按“投疑——感知——概括——鞏固、應用和拓展”的敘述模式呈現教學內容的,這種呈現方式符合七年級學生的認知規律和學習規律,使學生從被動的學習到主動探索和發現的轉化中感受到學習與探索的樂趣。本堂課先采用以設疑探究的引課方式,激發學生的求知欲望,提高學生的學習興趣和學習積極性,再把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,使學生能順利地掌握重點,突破難點,提高能力。并在課堂教學中,引導學生體會知識的發生發展過程,堅持啟發式的教學方法,鼓勵學生充分地動腦、動口、動手,積極參與到教學中來,充分體現了學生的主動性原則。并改變了傳統的言傳身教的方式,恰當地運用了現代教育技術,展現了一個平等、互動的民主課堂。
因式分解教案10
15.1.1 整式
教學目標
1.單項式、單項式的定義.
2.多項式、多項式的次數.
3、理解整式概念.
教學重點
單項式及多項式的有關概念.
教學難點
單項式及多項式的有關概念.
教學過程
Ⅰ.提出問題,創設情境
在七年級,我們已經學習了用字母可以表示數,思考下列問題
1.要表示△ABC的周長需要什么條件?要表示它的面積呢?
2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?
結論:
1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.
2.小王的平均速度是 .
問題:這些式子有什么特征呢?
(1)有數字、有表示數字的字母.
(2)數字與字母、字母與字母之間還有運算符號連接.
歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數和表示數的字母連接起來的式子叫做代數式.
判斷上面得到的三個式子:a+b+c、 ch、 是不是代數式?(是)
代數式可以簡明地表示數量和數量的關系.今天我們就來學習和代數式有關的整式.
Ⅱ.明確和鞏固整式有關概念
(出示投影)
結論:(1)正方形的周長:4x.
(2)汽車走過的路程:vt.
(3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.
(4)n的相反數是-n.
分析這四個數的特征.
它們符合代數式的定義.這五個式子都是數與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發現這五個代數式中字母指數各不相同,字母的個數也不盡相同.
請同學們閱讀課本P160~P161單項式有關概念.
根據這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數式中,哪些是單項式?是單項式的,寫出它的系數和次數.
結論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數分別是4、1、6、1、-1、 .它們的次數分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.
問題:vt中v和t的指數都是1,它不是一次單項式嗎?
結論:不是.根據定義,單項式vt中含有兩個字母,所以它的次數應該是這兩個字母的指數的和,而不是單個字母的指數,所以vt是二次單項式而不是一次單項式.
生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯系呢?
寫出下列式子(出示投影)
結論:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面積應是直角三角形的面積減去圓的面積,即 ab-3.12r2.
(4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發現它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?
這樣推理合情合理.請看投影,熟悉下列概念.
根據定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數.
a+b+c的項分別是a、b、c.
t-5的項分別是t、-5,其中-5是常數項.
3x+5y+2z的項分別是3x、5y、2z.
ab-3.12r2的項分別是 ab、-3.12r2.
x2+2x+18的項分別是x2、2x、18. 找多項式的次數應抓住兩條,一是找準每個項的次數,二是取每個項次數的最大值.根據這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.
這節課,通過探究我們得到單項式和多項式的有關概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統稱為整式.
Ⅲ.隨堂練習
1.課本P162練習
Ⅳ.課時小結
通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關概念是本節的重點,特別是它們的次數.在現實情景中進一步理解了用字母表示數的意義,發展符號感.
Ⅴ.課后作業
1.課本P165~P166習題15.1─1、5、8、9題.
2.預習“整式的加減”.
課后作業:《課堂感悟與探究》
15.1.2 整式的加減(1)
教學目的:
1、解字母表示數量關系的過程,發展符號感。
2、會進行整式加減的運算,并能說明其中的算理,發展有條理的思考及語言表達能力。
教學重點:
會進行整式加減的運算,并能說明其中的算理。
教學難點:
正確地去括號、合并同類項,及符號的正確處理。
教學過程:
一、課前練習:
1、填空:整式包括 和
2、單項式 的系數是 、次數是
3、多項式 是 次 項式,其中二次項
系數是 一次項是 ,常數項是
4、下列各式,是同類項的一組是( )
(A) 與 (B) 與 (C) 與
5、去括號后合并同類項:
二、探索練習:
1、如果用a 、b分別表示一個兩位數的十位數字和個位數字,那么這個兩位數可以表示為 交換這個兩位數的十位數字和個位數字后得到的兩位數為
這兩個兩位數的和為
2、如果用a 、b、c分別表示一個三位數的百位數字、十位數字和個位數字,那么這個三位數可以表示為 交換這個三位數的百位數字和個位數字后得到的三位數為
這兩個三位數的差為
●議一議:在上面的兩個問題中,分別涉及到了整式的什么運算?
說說你是如何運算的?
▲整式的加減運算實質就是
運算的結果是一個多項式或單項式。
三、鞏固練習:
1、填空:(1) 與 的差是
(2)、單項式 、 、 、 的和為
(3)如圖所示,下面為由棋子所組成的三角形,
一個三角形需六個棋子,三個三角形需
( )個棋子,n個三角形需 個棋子
2、計算:
(1)
(2)
(3)
3、(1)求 與 的和
(2)求 與 的差
4、先化簡,再求值: 其中
四、提高練習:
1、若A是五次多項式,B是三次多項式,則A+B一定是
(A)五次整式 (B)八次多項式
(C)三次多項式 (D)次數不能確定
2、足球比賽中,如果勝一場記3a分,平一場記a分,負一場
記0分,那么某隊在比賽勝5場,平3場,負2場,共積多
少分?
3、一個兩位數與把它的數字對調所成的數的和,一定能被14
整除,請證明這個結論。
4、如果關于字母x的二次多項式 的值與x的取值無關,
試求m、n的值。
五、小結:整式的加減運算實質就是去括號和合并同類項。
六、作業:第8頁習題1、2、3
15.1.2整式的加減(2)
教學目標:1.會進行整式加減的運算,并能說明其中的算理,發展有條理的思考及其語言表達能力。
2.通過探索規律的問題,進一步符號表示的意義,發展符號感,發展推理能力。
教學重點:整式加減的運算。
教學難點:探索規律的猜想。
教學方法:嘗試練習法,討論法,歸納法。
教學用具:投影儀
教學過程:
I探索練習:
擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續擺下去。
(1)擺第10個這樣的“小屋子”需要 枚棋子
(2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。
二、例題講解:
三、鞏固練習:
1、計算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B
3、列方程解應用題:三角形三個內角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么
(1)第一個角是多少度?
(2)其他兩個角各是多少度?
四、提高練習:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?
2、設A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且B-2A=a,求A的值。
3、已知有理數a、b、c在數軸上(0為數軸原點)的對應點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算。
作 業:課本P14習題1.3:1(2)、(3)、(6),2。
因式分解教案11
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據原有的知識基礎,或運用乘法的各種運算規律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。
因式分解是一種常用的代數式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標
(1)會推導乘法公式
(2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關鍵
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
1.注重知識形成的探索過程,讓學生在探索過程中領悟知識,在領悟過程中建構體系,從而更好地實現知識體系的更新和知識的正向遷移.
2.知識內容的呈現方式力求與學生已有的知識結構相聯系,同時兼顧學生的思維水平和心理特征.
3.讓學生掌握基本的數學事實與數學活動經驗,減輕不必要的記憶負擔.
4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數學的應用價值,逐步養成談數學、想數學、做數學的良好習慣.
三、課時安排:
2.1平方差公式 1課時
2.2完全平方公式 2課時
2.3用提公因式法進行因式分解 1課時
2.4用公式法進行因式分解 2課時
因式分解教案12
教學目標
1、 會運用因式分解進行簡單的'多項式除法。
2、 會運用因式分解解簡單的方程。
二、教學重點與難點教學重點:
教學重點
因式分解在多項式除法和解方程兩方面的應用。
教學難點:
應用因式分解解方程涉及較多的推理過程。
三、教學過程
(一)引入新課
1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應用平方差公式: = (a+b) (a—b)③應用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動,講授新課
1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個小問題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內練習
合作學習
想一想:如果已知 ( )( )=0 ,那么這兩個括號內應填入怎樣的數或代數式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論!)事實上,若AB=0 ,則有下面的結論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0
試一試:你能運用上面的結論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數的方程的解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2
等練習:課本P162課內練習2
做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?
教師總結:運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識,總結收獲因式分解的兩種應用:
(1)運用因式分解進行多項式除法
(2)運用因式分解解簡單的方程
(四)布置課后作業
作業本6、42、課本P163作業題(選做)
因式分解教案13
第1課時
1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.
2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.
自主探索,合作交流.
1.通過與因數分解的類比,讓學生感悟數學中數與式的共同點,體驗數學的類比思想.
2.通過對因式分解的教學,培養學生“換元”的意識.
【重點】 因式分解的概念及提公因式法的應用.
【難點】 正確找出多項式中各項的公因式.
【教師準備】 多媒體.
【學生準備】 復習有關乘法分配律的知識.
導入一:
【問題】 一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.
解法1:這塊場地的面積=×+×+×=++==2.
解法2:這塊場地的面積=×+×+×=×=×4=2.
從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.
[設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.
導入二:
【問題】 計算×15-×9+×2采用什么方法?依據是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.
[設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.
一、提公因式法分解因式的概念
思路一
[過渡語] 上一節我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的問題.
如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).
大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯系?等式右邊的項有什么特點?
分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.
由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的公因式.
由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.
總結:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設計意圖] 通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.
思路二
[過渡語] 同學們,我們來看下面的問題,看看同學們誰先做出來.
多項式 ab+ac中,各項都含有相同的因式嗎?多項式 3x2+x呢?多項式b2+nb-b呢?
結論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.
多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?
結論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設計意圖] 從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.
二、例題講解
[過渡語] 剛剛我們學習了因式分解的一種方法,現在我們嘗試下利用這種方法進行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【學生活動】 通過剛才的練習,大家互相交流,總結出提取公因式的一般步驟和容易出現的問題.
總結:提取公因式的步驟:(1)找公因式;(2)提公因式.
容易出現的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.
教師提醒:
(1)各項都含有的字母的最低次冪的積是公因式的字母部分;
(2)因式分解后括號內的多項式的項數與原多項式的項數相同;
(3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;
(4)將分解因式后的式子再進行整式的乘法運算,其積應與原式相等.
[設計意圖] 經歷用提公因式法進行因式分解的過程,在教師的啟發與指導下,學生自己歸納出提公因式的步驟及提取公因式時容易出現的類似問題,為提取公因式積累經驗.
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
這里的字母a,b,c,可以是一個系數不為1的、多字母的、冪指數大于1的單項式.
2.提公因式法分解因式的關鍵在于發現多項式的公因式.
3.找公因式的一般步驟:
(1)若各項系數是整系數,則取系數的最大公約數;
(2)取各項中相同的字母,字母的指數取最低的;
(3)所有這些因式的乘積即為公因式.
1.多項式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根據確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.
2.下列用提公因式法分解因式正確的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.
3.下列多項式中應提取的公因式為5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.應提取公因式5ab2,錯誤;C.應提取公因式10a2b,錯誤;D.應提取公因式5a2b2,錯誤.故選A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多項式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)計算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1課時
一、教材作業
【必做題】
教材第96頁隨堂練習.
【選做題】
教材第96頁習題4.2.
二、課后作業
【基礎鞏固】
1.把多項式4a2b+10ab2分解因式時,應提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規律?請你將猜想到的規律用含有字母n(n為自然數)的式子表示出來.
【答案與解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由題中給出的幾個式子可得出規律:n2+n=n(n+1).
本節運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.
在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.
由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應該注重因式分解的概念和方法的教學.
隨堂練習(教材第96頁)
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
習題4.2(教材第96頁)
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正確,因為提取的公因式不對,應為n(2n--1). (2)不正確,因為提取公因式-b后,第三項沒有變號,應為-b(ab-2a+3). (3)正確. (4)不正確,因為最后的結果不是乘積的形式,應為(a-2)(a+1).
提公因式法是本章的第2小節,占兩個課時,這是第一課時,它主要讓學生經歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關系.
已知方程組求7(x-3)2-2(3-x)3的值.
〔解析〕 將代數式分解因式,產生x-3與2x+兩個因式,再根據方程組整體代入,使計算簡便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程組可得原式=12×6=6.
因式分解教案14
第6.4因式分解的簡單應用
背景材料:
因式分解是初中數學中的一個重點內容,也是一項重要的基本技能和基礎知識,更是一種數學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數學問題中有著廣泛的作用,因式分解在三角形中的應用,因式分解可以用來證明代數問題,用于代數式的求值,用于求不定方程,用于解應用題解決有關復雜數值的計算,本節課的例題因式分解在數學題中的簡單應用。
教材分析:
本節課是本章的最后一節,是學生學習因式分解初步應用,首先要使學生體會到因式分解在數學中應用,其次給學生提供更多機會體驗主動學習和探索的“過程”與“經歷”,使多數學里擁有一定問題解決的經驗。
教學目標:
1、在整除的情況下,會應用因式分解,進行多項式相除。
2、會應用因式分解解簡單的一元二次方程。
3、體驗數學問題中的矛盾轉化思想。
4、培養觀察和動手能力,自主探索與合作交流能力。
教學重點:
學會應用因式分解進行多項式除法和解簡單一元二次方程。
教學難點:
應用因式分解解簡單的一元二次方程。
設計理念:
根據本節課的內容特點,主要采用師生合作控討式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創新思維為核心,態度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數學素養,能有效地激發學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。
教學過程:
一、創設情境,復習提問
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同學到黑板上演板,本課時用復習“練習引入”也不失為一種好方法,既先復習因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]
教師訂正
提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)
二、導入新課,探索新知
(先讓學生思考上面所提出的問題,教師從旁啟發)
師:如果出現豎式計算,教師可以給予肯定;可能出現(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據是什么?這樣暴露學生的思維,讓學生自己發現錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數,如果用“換元”思想,我們就可以把問題轉化為單項式除以單項式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(讓學生自己比較哪種方法好)
利用上面的數學解題思路,同學們嘗試計算
(4x2-9)÷(3-2x)
學生總結解題步驟:1、因式分解;2、約去公因式)
(全體學生動手動腦,然后叫學生回答,及時表揚,講練結合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉化為單項式的除法]
練習計算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學習
1、以四人為一組討論下列問題
若A?B=0,下面兩個結論對嗎?
(1)A和B同時都為零,即A=0且B=0
(2)A和B至少有一個為零即A=0或B=0
[合作學習,四個小組討論,教師逐步引導,讓學生講自己的想法,及解題步驟,培養語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]
2、你能用上面的結論解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉化為解一元一次方程]
3、練習,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小結
(1)應用因式分解和換元思想可以把某些多項式除法轉化為單項式除法。
(2)如果方程的等號一邊是零,另一邊含有未知數x的多項式可以分解成若干個x的一次式的積,那么就可以應用因式分解把原方程轉化成幾個一元一次方程來解。
設計理念:
根據本節課的內容特點,主要采用師生合作討論式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創新思維為核心,態度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數學素養,能有效地激發學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。
因式分解教案15
教學目標:運用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點,會用提公因式法與公式法分解因式.培養學生的觀察、聯想能力,進一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應用提公因式法、公式法分解因式以及因式分解的標準.
教學重點和難點:1.平方差公式;2.完全平方公式;3.靈活運用3種方法.
教學過程:
一、提出問題,得到新知
觀察下列多項式:x24和y225
學生思考,教師總結:
(1)它們有兩項,且都是兩個數的平方差;(2)會聯想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項式是兩數差的形式,并且這兩個數又都可以寫成平方的形式,那么這個多項式可以運用平方差公式分解因式.
二、運用公式
例1:填空
①4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項式能否用平方差公式進行因式分解
①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
②4a2+625b2不能用
③16x549y4不能用
④4x236y2不能用
【因式分解教案】相關文章:
初中因式分解同步練習題05-26
因式分解同步的練習題05-27
關于因式分解課后練習題05-27
因式分解同步練習題以及答案05-27
整式的乘除與因式分解測試卷07-26
因式分解同步練習題目及答案05-27
初中因式分解同步練習題目及答案05-26
整式的乘除與因式分解練習題整合05-27
關于整式的乘除與因式分解課后練習題05-27