亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

《比例的意義》教案

時間:2022-03-31 20:00:52 教案 我要投稿

《比例的意義》教案

  作為一名辛苦耕耘的教育工作者,常常要根據教學需要編寫教案,教案是教學活動的依據,有著重要的地位。教案應該怎么寫才好呢?以下是小編整理的《比例的意義》教案,歡迎閱讀,希望大家能夠喜歡。

《比例的意義》教案

《比例的意義》教案1

  教學目標

  (一)知識教學點

  感受并理解比例尺的意義,會計算圖上距離和實際距離,并能解決相關的實際問題。

  (二)能力訓練點

  ①培養學生發現問題、分析問題、解決問題能力;

  ②在實際應用中感受數學、親近數學,培養學生學習數學的興趣;

  ③辯證唯物主義的初步滲透

  教學重點 比例尺的應用。

  教學難點 比例尺的實際意義。

  教學過程

  一、設置教學情境,感受比例尺

  (一)畫畫比比

  1、 估計黑板的長和寬:教室前的這塊黑板同學們熟悉嗎?

  請你估計一下黑板的長和寬。

  2、 丈量黑板的長和寬:(板書:黑板實際長3.5米,寬1.5米)

  3、 畫黑板:你能照樣子把黑板畫在本子上嗎?(師巡視)

  4、 質疑:這么大的黑板,為什么能畫在這么小的一張紙上呢?(長和寬按一定的比例縮小了。)

  [評析:照樣子畫黑板是同學們美術課上再熟悉不過的舉動,但以此為本節課的開始,讓學生在不知不覺中體會到了比例尺,實為教者的匠心之筆!]

  5、挑兩個黑板圖(一個畫得不像一個畫得較像)出示:

  a) 評價:①誰畫得更像一點?

  ②分析圖A畫得不像原因可能是什么?(長和寬縮小的比例不一樣。)

  b) 師生合作,算一下長和寬分別縮小了多少倍?得數保留整數。(屏幕顯示)

  圖上長7厘米,長縮小:3507=50 圖上長5厘米,長縮小:3505=70

  寬1.5厘米,寬縮小:1501.5=100 寬2.5厘米,寬縮小:1502.5=60

  c) 點撥:從上面計算結果來看圖A長和寬縮小的比例差距較大(即比例失調),所以看上去畫得不像;而圖B長和寬縮小的比例接近,所以看上去畫得較像。

  [評析:實踐出真知!讓學生分析畫得像與不像使學生真真切切地感受到了比例尺的作用,以此激發學生學習比例尺的興趣。]

  (二)再畫再比

  1、想一想怎樣畫得更像?(長和寬縮小的比例要保持相同。)

  2、課件展示準確的平面圖:

  3、請你幫老師算算長和寬分別縮小多少倍?

  圖上長3.5厘米縮小:3503.5=100 寬1.5厘米縮小:1501.5=100

  4、小結:當長和寬縮小的倍數相同時,黑板的平面圖就十分逼真!由此可見,為了能反映真實的情況,畫圖時必須要有個統一的標準,這個統一的標準就是比例尺。(板書:比例尺)

  [評析:從畫黑板提出問題到比比誰畫得像分析問題再到如何畫得更像解決問題。教者均是置學生于熟悉的生活背景下,感受并理解比例尺意義,體現了數學的生活性。]

  二、結合實際,理解比例尺

  (一)說一說

  ①講授:課件中的長方形是按縮小100倍來畫的,我們就說這幅圖的比例尺是1﹕100。

  ②誰來說說比例尺1﹕100表示什么?(圖上距離是實際距離的一百分之一;實際距離是圖上距離的一百倍;圖上距離1厘米表示實際距離100厘米等等)。

  ③圖A、圖B長和寬比例尺各是多少?分別表示什么?

  小結:一幅圖一般只有一個比例尺,當長和寬的比例尺不一樣時,所畫黑板就會失真。

  ④用自己話說說什么叫做比例尺?怎樣計算比例尺?

  小結:圖上距離與實際距離的比叫做比例尺;比例尺通常寫成前項是1的比。

  (二)算一算

  ①下圖是我校附近的平面圖(屏幕同時顯示),新華五村菜場距我校直線距離約300米,可在這幅圖上只畫了3厘米,這幅圖的比例尺是多少?

  評講:你是如何算得?結果是多少?(1﹕10000)要注意些什么?

  ②從1﹕10000這一比例尺上,你能獲取那些信息?

  板書:圖上距離是實際距離的一萬分之一;實際距離是圖上距離的一萬倍;圖上距離1厘米表示實際距離10000厘米等等。

  [評析:比例尺是一個實用性很強的知識點,教師在幫助學生理解比例尺意義時,運用實例讓學生說一說、算一算,口腦并用,從多角度多方位理解比例尺的實際含義,為下面多種角度計算實際距離、圖上距離打下知識準備。]

  三、聯系實際,應用比例尺

  (一)求圖上距離

  1、還是在這幅圖上,現在要標上區委,估計一下我校離區委直線距離有多遠?(400米)你看在這幅圖上要畫多長?

  ①獨立思考,試試看,如感覺有困難小組內小聲討論。

  ②評講:你是怎么想的?還可以怎么算?你覺得要注意些什么?

  方法一:400米=40000厘米 方法二:400米=40000厘米

  4000010000=4(厘米) 400001/10000=4(厘米)

  方法三:10000厘米=100米 方法四:用比例解(略)等等

  400 100=4(厘米)

  小結:求圖上距離可以用乘法計算,也可以用除法計算,關鍵是理解的角度不一樣。

  ③如何畫?自己畫畫看。(按上北下南左西右東常規去畫,注意方向。)

  [評析:怎樣計算圖距和實距?教者一改以往根據比例尺計算方法去死套公式(圖距=實距比例尺;實距=圖距比例尺)的做法,也一改教材中煩瑣的比例解法,而是借助于學生對比例尺的多角度理解,不把知識點講死,讓學生靈活的選擇解決方法,很好的體現了新課標的理念以人為本,即讓不同的學生學不同的數學,讓不同的學生得到不同的發展。]

  2、練一練:

  區委東北是我區鬧市區十村,已知區委和十村實際距離是2.5千米,在這圖上應畫多長?如何畫?自己畫畫看。(課件演示)

  3、畫一畫:

  ①請準確地畫出教室前黑板的平面圖。(怎樣畫才算準確?)

  ②評講:你是如何畫的?方法一:自己定一個比例尺算出圖上長和寬然后畫;方法二:在原有圖上以長的比例尺為比例畫出寬;方法三:在原有圖上以寬的比例尺為比例畫出長。

  (二)求實際距離

  1、 西廠門在區委的東南面,(課件演示)量得圖上距離是9厘米,如何算實際距離?有幾種算法?

  ①獨立思考;②合作交流;③講評算理。(略)

  2、練習:南鋼賓館在區委西南(課件演示)量得圖上距離是18厘米,如何算實際距離?

  [評析:用學生熟悉的生活場景大廠區各地名,采取學生感興趣的活動畫地圖聯系實際應用比例尺意義計算圖距和實距,使學生對數學倍感親切,感覺數學就在我們身邊,突出的體現了數學的生活性。]

  (三)新課延伸

  1、 南京距大廠40千米,畫在這幅圖上要畫多少厘米?

  ①獨立列式計算(400厘米)。

  ②要畫400厘米,你有何感覺?(太長畫不下)

  ③畫不下怎么辦?(調整比例尺)

  ④說說你的調整方案?

  [評析:一石激起千層浪!在矛盾沖突中培養學生發現問題、分析問題、解決問題的能力,同時達到使學生跳出大廠看比例的目的。]

  2、請拿出標有南京上海的地圖,找出比例尺并說說意義。

  ①同座位間合作算出實際距離。

  ②一輛汽車從南京早上9﹕00從南京出發趕往上海,要趕下午2﹕00的飛機,如果車速是每小時80千米,問能否趕及?為什么?

  2、五一長假是旅游的黃金季節,請同學們采訪一下聽課的老師,最向往哪個大城市,然后根據地圖幫老師算出實際距離,再告訴被采訪的老師。

  [評析:很有創意!采訪老師,就地取材增加課的參與度;學生下位采訪,體現課的開放性,培養學生解決實際問題能力的同時培養學生的交際能力。使課堂教學內容得到了再延伸!]

  四、課堂總結,回顧比例尺(略)

  [總評:本節課循著一根知識主線比例尺的意義與應用,引入新知別出心裁,探究新知有章有法,練習設計富有創意;同時循著一根能力主線培養學生解決實際問題能力,無論是哪個環節的例子都來源于學生熟悉的生活,重視學生的獨立探究與合作討論相結合。同時多次運用多媒體輔助教學,充分體現了以教師為主導,學生為主體,訓練為主線的嚴禁課堂教學結構,使學生學的輕松,學有成效。]

《比例的意義》教案2

  教學目標

  知識目標:理解比例的意義,掌握組成比例的關鍵條件。

  能力目標:能正確的判斷兩個比能否組成比例。

  情感目標:通過動手、動腦、觀察、計算、討論等方式,使學生自主獲取知識,全面參與教學活動。

  重點解比例的意義,掌握組成比例的關鍵條件。

  難點正確的判斷兩個比能否組成比例。

  教學過程教學預設個性修改。

  目標導學復習激趣目標導學自主合作匯報交流變式訓練。

  創境激疑

  一、創設情境,導入新課

  師:同學們,每周一的早上我們學校都要舉行莊嚴的升國旗儀式,那么,你們對國旗都有哪些了解呢?(生自由回答)

  師:同學們都說出了自己的想法,說明你們都很熱愛我們的國家,希望你們以后一定要好好學習,做一個有用的人,把我們的國家建設的更加美好!五星紅旗是莊嚴而美麗的,并且它與我們數學也有著密切的聯系,這也就是我們今天所要研究的內容:比例(板書課題:比例)

  合作探究

  二、新授(課件出示不同大小的國旗圖案)

  師:畫面上出現了四幅不同大小的國旗,請同學們任選兩面國旗來算一算它們各自長與寬的比值是多少?然后觀察結果,你能發現什么?

  (板演,觀察到比值相等,教師板書:兩個比相等)

  師:那我們就可以將這兩個比用等號連接。(教師板書生匯報的兩個相等的比)

  教師邊指著這組相等的比一邊說:好,像這樣表示兩個比相等的式子就叫做比例。(把定義補充完整)。這就是比例的意義(把課題板書完整)請同學們齊讀。

  請同學們再默讀一遍比例的意義,思考:想要組成比例必須要具備哪些條件?(生回答,等式;有兩個相等的比)

  (教師再強調:一定是比值相等的兩個比才能組成比例。)

  師:你還能從四面國旗中找出哪些比例?

  (寫在練習本上,然后匯報。教師板書)

  師:我們在學習比的時候,可以把比寫成分數的形式,比如:60:40=60/40,那比例也能寫成分數的形式嗎?怎么寫?(口答)

  師:我們剛才一直在強調比和比例的聯系,那么比就是比例嗎?

  從形式上區分:比由兩個數組成;比例由四個數組成。

  從意義上區分:比表示兩個數之間的倍數關系;比例表示兩個比相等的式子。

  拓展應用下面哪些組的兩個比可以組成比例?如果能,在()打對號。

  10:2和35:42()0.6:0.2和):4和3:():和12:8()

  總結小強3分鐘走了180米,小剛1小時走了3.6千米。小強說他們各自所走的路程和時間的比能組成比例,小剛說不能組成比例。請問:誰說的對?

  作業布置做一做。

  板書設計比例的意義

  2.4:1.6=60:40=

  2.4:1.6=60:40

  (或)=

《比例的意義》教案3

  教學目標:

  1、 使學生理解并掌握比例的意義,認識比例的各部分名稱,探究比例的基本性質,學會應用比例的意義和基本性質判斷兩個比是否能組成比例,并能正確的組成比例。

  2、 培養學生的觀察能力、判斷能力。

  教學重點:

  比例的意義和基本性質

  學法:

  自主、合作、探究

  教學準備:

  課件

  教學過程:

  一:創設情境,導入新課

  1、 談話,播放課件,引出主題圖

  師:這節課我們上一節數學課,這節數學課有很多有趣的知識等待著同學們去探索和發現呢!同學們你們有信心接受挑戰嗎?

  (播放視頻,生觀察,并說看到的內容)

  師:看到這些畫面你的心情怎么樣?(激動、興奮、驕傲、自豪……)

  師:是啊,老師和你們一樣,每當聽到雄壯的國歌聲,看見鮮艷的五星紅旗,老師的心情也十分激動,國旗是我們偉大祖國的象征,是神圣的。

  問:畫面上這幾面國旗有什么不同?(大小不一樣)

  師:雖然這幾面國旗大小不一樣,但是長和寬的比值都是一樣的,這節課我們就來研究有關比例的知識。(板書:比例)

  (課件出示主題圖,讓學生說出長和寬各是多少)

  問:你能根據這些國旗的長和寬的尺寸,寫出長與寬的比,并求出比值嗎?請同學們先寫出學校內兩面國旗長與寬的比,并求出比值。(生動手寫比、求比值)

  二、引導探究,學習新知

  1、比例的意義

  (生匯報求比值的過程)

  師:請同學們觀察你求出的學校內兩面國旗的比值,你有什么發現?(這兩個比的比值相等)

  師:這兩個比的比值相等,我用“=”把這兩個比連起來,可以嗎?(可以)

  師:從圖上四面國旗才尺寸中你還能找出哪些比求出比值,也寫成這樣的等式呢?請同學們自己動筆試一試(生動手寫比,求比值,寫等式,并匯報)

  師:指學生匯報的等式小結,像這樣由比值相等的兩個比組成的等式就是比例,誰能概括出比例的意義?(板書課題,生匯報,是板書意義)

  問:判斷兩個比是否能組成比例,關鍵看什么?(關鍵看它們的比值是否相等)

  (小練習,課件出示)

  2探究比例的基本性質

  (1)自學比例的名稱

  師:小結通過剛才的學習,我們理解了比例的意義,那么在比例中各部分名稱是怎樣的,各部分名稱與各項在比例中的位置又有什么關系呢?打開書34頁,自學34也上半部分,比例各部分的名稱。(生自學名稱,匯報,師板書名稱)

  (2)合作探究比例的基本性質

  師:同學們,你們知道嗎?在比例的內項和外項之間還存在著一個有趣的特性呢!你們想去發現這個特性嗎?接下來就請同學們以小組為單位合作探究比例的基本性質。(板書:比例的基本性質) 課件出示小組合作學習提示,指名讀

  各小組派一名代表匯報合作學習發現的規律。

  師:是不是所有的比例都具有這樣的特性呢?分組驗證課前寫出的比例式。

  師:問想一想,判斷兩個比能不能組成比例除了根據比例的意義去判斷外還可以根據什么去判斷?(生回答:根據比例的基本性質)

  師:如果把比例改寫成分數形式是什么樣的?生回答。根據比例的基本性質,等號兩邊的分子和分母之間又有什么關系呢?生回答,師板書

  三、鞏固練習(見課件)

  四、匯報學習收獲

《比例的意義》教案4

  教學目標

  1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯的量是否成比例,成什么比例.

  2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

  3.滲透辯證唯物主義的觀點,進行運用變化觀點的啟蒙教育.

  教學重難點

  理解正反比例的意義,掌握正反比例的變化的規律.

  教學過程

  一、導入新課

  (一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?

  (二)教師提問

  1.你為什么馬上能想到還剩多少呢?

  2.是不是因為吃了的和剩下的是兩種相關聯的量?

  教師板書:兩種相關聯的量

  (三)教師談話

  在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和

  數量也是兩種相關聯的量.你還能舉出一些例子嗎?

  二、新授教學

  (一)成正比例的量

  例1.一列火車行駛的時間和所行的路程如下表:

  時間(時):路程(千米)

  1 :90

  2 :180

  3 :270

  4 :360

  5 :450

  6 :540

  7 :630

  8 :720

  1.寫出路程和時間的比并計算比值.

  (1) 2表示什么?180呢?比值呢?

  (2) 這個比值表示什么意義?

  (3) 360比5可以嗎?為什么?

  2.思考

  (1)180千米對應的時間是多少?4小時對應的路程又是多少?

  (2)在這一組題中上邊的一列數表示什么?下邊一列數表示什么?所求出的比值呢?

  教師板書:時間、路程、速度

  (3)速度是怎樣得到的?

  教師板書:

  (4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?

  (5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.

  3.小結:有什么規律?

《比例的意義》教案5

  第一課時

  教學內容:P32~34 比例的意義和基本性質

  教學目的:1、使同學理解比例的意義和基本性質,能正確判斷兩個比是否能組成比例。

  2、通過引導探究、概括歸納、討論、合作學習,培養同學籠統概括能力。

  3、使同學初步感知事物間是相互聯系、變化發展的。

  教學重點;比例的意義和基本性質

  教學難點:應用比的基本性質判段兩個數能否成比例,并正確的組成比例。

  教學過程:

  一、回顧舊知,復習鋪墊

  1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。

  教師把同學舉的例子板書出來,并注明比的各局部的名稱。

  2、我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?教師板書出下面幾組比,讓同學求出它們的比值。

  12:16 : 4.5:2.7 10:6

  同學求出各比的比值后,再提問:哪兩個比的比值相等?

  (4.5:2.7的比值和10:6的比值相等。)

  教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?這就是這節課我們要學習的內容。(板書課題:比例的意義)

  二、引導探究,學習新知

  1、教學比例的意義。

  (1)出示P32例1。

  每面國旗的長和寬的比分別是多少?指名分別算出一面國旗長和寬的比。

  5: 2.4:1.6 60:40 15:10

  每面國旗長和寬的比值有什么關系?(都相等)

  5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

  象這樣表示兩個比相等的式子叫做比例。

  比例也可以寫成: = =

  (2)我們也學過不同的兩個量也可以組成一個比,如:

  一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:

  時間(時) 2 5

  路程(千米) 80 200

  指名同學讀題。

  教師:這道題涉和到時間和路程兩個量的關系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。 這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問 邊填寫表格。)

  “你能根據這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據同學的回答,板書:

  第一次所行駛的路程和時間的比是80:2

  第二次所行駛的路程和時間的比是200:5

  讓同學算出這兩個比的比值。指名同學回答,教師板書:80:2=40,200:5=40。讓同學觀察這兩個比的比值。再提問:你們發現了什么?”(這兩個比的比值都是40,這兩個比相等。)

  教師說明:因為這兩個比相等,所以可以把它們用等號連起來組成比例。(板書:80:2=200:5)像這樣表示兩個比相等的式子叫做比例。

  指著比例式4.5:2.7=10:6提問: “誰能說說什么叫做比例?”引導同學觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓同學齊讀一遍。

  “從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必需具備什么條件?因此判斷兩個比能不能組成比例,關鍵是看什么?假如不能一眼看出兩個比是不是相等的,怎么辦?”

  根據同學的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。假如不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。例如判斷10:12和35: 42這兩個比能不能組成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上舉例邊說邊板書。)

  (3)比較“比”和“比例”兩個概念。

  教師:上學期我們學習了“比”,現在又知道了“比例”的意義,那么“比”和“比例”有什么區別呢?

  引導同學從意義上、項數上進行對比,最后教師歸納:比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。

  (4)鞏固練習。

  ①用手勢判斷下面卡片上的兩個比能不能組成比例。(能,就用張開拇指和食指表示;不能就用兩手的食指交叉表示。)

  6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

  同學判斷后,指名說出判斷的根據。

  ②做P33“做一做”。

  讓同學看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自身做得對不對。

  ③給出2、3、4、6四個數,讓同學組成不同的比例(不要求舉全)。

  ④P36練習六的第1~2題。

  對于能組成比例的四個數,把能組成的比例寫出來。組成的比例只要能成立就可以。

  第4小題,給出的四個數都是分數,在寫比例式時,也要讓同學寫成分數形式。

《比例的意義》教案6

  1、成正比例的量

  教學內容:成正比例的量

  教學目標:

  1.使學生理解正比例的意義,會正確判斷成正比例的量。

  2.使學生了解表示成正比例的量的圖像特征,并能根據圖像解決有關簡單問題。

  教學重點:正比例的意義。

  教學難點:正確判斷兩個量是否成正比例的關系。

  教學過程:

  一揭示課題

  1.在現實生活中,我們常常遇到兩種相關聯的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?

  在教師的此導下,學生會舉出一些簡單的例子,如:

  (1)班級人數多了,課桌椅的數量也變多了;人數少了,課桌椅也少了。

  (2)送來的牛奶包數多了,牛奶的總質量也多了;包數少了,總質量也少了。

  (3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。

  (4)排隊時,每行人數少了,行數就多了;每行人數多了。行數就少了。

  2.這種變化的量有什么規律?存在什么關系呢?今天,我們首先來學習成正比例的量。板書:成正比例的量

  二探索新知

  1.教學例1

  (1)出示例題情境圖。

  問:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。

  (2)出示表格。

  高度/㎝24681012

  體積/㎝350100150200250300

  底面積/㎝2

  問:你有什么發現?

  學生不難發現:杯子的底面積不變,是25㎝2。

  板書:

  教師:體積與高度的比值一定。

  (2)說明正比例的意義。

  ①在這一基礎上,教師明確說明正比例的意義。

  因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。

  板書出示:像這樣,兩種相關聯的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。

  ②學生讀一讀,說一說你是怎么理解正比例關系的。

  要求學生把握三個要素:

  第一,兩種相關聯的量;

  第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。

  第三,兩個量的比值一定。

  (3)用字母表示。

  如果用字母X和Y表示兩種相關聯的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:

  (4)想一想:

  師:生活中還有哪些成正比例的量?

  學生舉例說明。如:

  長方形的寬一定,面積和長成正比例。

  每袋牛奶質量一定,牛奶袋數和總質量成正比例。

  衣服的單價一不定期,購買衣服的數量和應付錢數成正比例。

  地磚的面積一定,教室地板面積和地磚塊數成正比例。

  2.教學例2。

  (1)出示表格(見書)

  (2)依據下表中的數據描點。(見書)

  (3)從圖中你發現了什么?

  這些點都在同一條直線上。

  (4)看圖回答問題。

  ①如果杯中水的高度是7㎝,那么水的體積是多少?

  生:175㎝3。

  ②體積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?

  生:水的體積是350㎝3,相對應的點一定在這條直線上。

  (5)你還能提出什么問題?有什么體會?

  通過交流使學生了解成正比例量的圖像特往。

  3.做一做。

  過程要求:

  (1)讀一讀表中的數據,寫出幾組路程和時間的比,說一說比值表示什么?

  比值表示每小時行駛多少千米。

  (2)表中的路程和時間成正比例嗎?為什么?

  成正比例。理由:

  ①路程隨著時間的變化而變化;

  ②時間增加,路程也增加,時間減少,路程也隨著減少;

  ③種程和時間的比值(速度)一定。

  (3)在圖中描出表示路程和時間的點,并連接起來。有什么發現?所描的點在一條直線上。

  (4)行駛120KM大約要用多少時間?

  (5)你還能提出什么問題?

  4.課堂小結

  說一說成正比例關系的量的變化特征。

  三鞏固練習

  完成課文練習七第1~5題。

  2、成反比例的量

  教學內容:成反比例的量

  教學目標:

  1.經歷探索兩種相關聯的量的變化情況過程,發現規律,理解反比例的意義。

  2.根據反比例的意義,正確判斷兩種量是否成反比例。

  教學重點:反比例的意義。

  教學難點:正確判斷兩種量是否成反比例。

  教學過程:

  一導入新課

  1.讓學生說一說成正比例的兩種量的變化規律。

  回答要點:

  (1)兩種相關聯的量;

  (2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;

  (3)兩個量的比值一定。

  2.舉例說明。

  如:每袋大米質量相同,大米的袋數與總質量成正比例。

  理由:

  (1)每袋大米質量一定,大米的總質量隨著袋數的變化而變化;

  (2)大米的袋數增加,大米的總質量也相應增加,大米的袋數

  減少,大米的總質量也相應減少;

  (3)總質量與袋數的比值一定。

  所以,大米的袋數與總質量成正比例。

  板書:

  3.揭示課題。

  今天,我們一起來學習反比例。兩種量是什么樣的關系時,這兩種量成反比例呢?

  板書課題:成反比例的量[ 內 容 結 束 ]

《比例的意義》教案7

  素質教育目標

  (一)知識教學點

  1.使學生理解正比例的意義。

  2.能根據正比例的意義判斷兩種量是不是成正比例。

  (二)能力訓練點

  1.培養學生用發展變化的觀點來分析問題的能力。

  2.培養學生抽象概括能力和分析判斷能力。

  (三)德育滲透點

  1.通過引導學生用發展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。

  2.進一步滲透函數思想。

  教學重點:使學生理解正比例的意義。

  教學難點:引導學生通過觀察、思考發現兩種相關聯的量的變化規律,即它們相對應的數的比值一定,從而概括出正比例關系的概念。

  教具學具準備:投影儀、投影片、小黑板。

  教學步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學回答:

  1.已知路程和時間,怎樣求速度?

  2.已知總價和數量,怎樣求單價?

  3.已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1.導入新課:這些都是我們已經學過的常見的數量關系。這節課,我們繼續研究這些數量關系中的一些特征。

  2.教學例1

  (1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

  (2)出示下表,并根據上述內容填表。

  一列火車行駛的時間和所行的路程如下表

  (3)邊填表邊思考:在填表過程中,你發現了什么?

  學生交流時,使之明確。

  ①表中有時間和路程兩種量。

  ②當時間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。

  教師點撥:

  像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯的量。(板書:兩種相關聯的量)

  ③如果學生沒有問題,教師提示:請每位同學任選一組相對應的數據,計算出路程與時間的比的比值。

  教師問:根據計算,你發現了什么?

  引導學生得出:相對應的兩個數的比值都是60或都一樣,固定不變等。

  教師指出:相對應的兩個數的比的比值都一樣或固定不變,在數學上叫做“一定”。(板書:相對應的兩個數的比值一定)

  ④比值60,實際就是火車的速度。用式子表示它們的關系就是:

  (4)教師小結:

  剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規律是:路程和時間的比的比值總是一定的。

  3.教學例2

  (1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數和總價的表。

  (2)觀察上表,引導學生明確:

  ①表中有數量(米數)和總價這兩種量,它們是兩種相關聯的量。

  ②總價隨米數的變化情況是:

  米數擴大,總價隨著擴大;米數縮小,總價也隨著縮小。

  ③相對應的總價和米數的比的比值是一定的。

  ④比值3.1,實際就是這種花布的單價。用式子表示它們的關系就是:

  (3)師生小結:通過剛才的觀察和分析,我們知道總價和米數也是兩種什么樣的量?(兩種相關聯的量)為什么?(總價隨著米數的變化而變化。)怎樣變化?(米數擴大,總價隨著擴大;米數縮小,總價隨著縮小。)它們擴大、縮小的規律是怎樣的?(總價和米數的比的比值總是一定的。)

  4.抽象概括正比例的意義。

  (1)比較例1、例2,思考并討論,這兩個例子有什么共同點?

  (2)學生初步交流時引導學生明確:

  ①例1中有路程和時間兩種量;例2中有米數和總價兩種量。即它們都有兩種相關聯的量;

  ②例1中時間變化,路程就隨著變化;例2中米數變化,總價也隨著變化。

  教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

  ③例1中路程與時間的比的比值一定:例2中總價與米數的比的比值一定。概括地講就是:兩種量中相對應的兩個數的比值(也就是商)一定。

  (學生答不出來時,教師引導、點撥,并補充板書:兩種量中)

  (3)引導學生抽象概括出兩例的共同點:

  兩種相關聯的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數的比值(也就是商)一定。

  (4)教師指明:兩種相關聯的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  (補充板書:如果這成正比例的量正比例關系)

  這就是我們這節課學習的“正比例的意義”(板書課題)

  (5)看書19、20頁的內容,進一步理解正比例的意義。

  (6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

  (7)想一想:在例2中,有哪兩種相關聯的量?它們是不是成正比例的量?為什么?

  (8)教師提出:如果字母x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?

  (9)教師提出:根據正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?

  5.教學例3

  (1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數是不是成正比例?

  (2)根據正比例的意義,由學生討論解答。

  (3)匯報判斷結果,并說明判斷的根據。

  教師板書:

  面粉的總重量和袋數是兩種相關聯的量。

  所以面粉的總重量和袋數成正比例。

  6.反饋練習

  讓學生試做第21頁的做一做,并訂正。

  三、鞏固發展

  1.完成練習三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數的比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?

  2.完成練習三第2題的(1)-(9)

  先讓學生自己判斷,再訂正。

  四、全課小結(師生共同進行)

  通過這節課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?

《比例的意義》教案8

  教學過程:

  一、復習鋪墊

  1、下面兩種量是不是成正比例?為什么?

  購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、導入新課:這節課我們繼續學習常見的數量關系中的另一種特征成反比例的量。

  2、教學P42例3。

  (1)引導學生觀察上表內數據,然后回答下面問題:

  A、表中有哪兩種量?這兩種量相關聯嗎?為什么?

  B、水的高度是否隨著底面積的變化而變化?怎樣變化的?

  C、表中兩個相對應的數的比值各是多少?一定嗎?兩個相對應的數的積各是多少?你能從中發現什么規律嗎?

  D、這個積表示什么?寫出表示它們之間的數量關系式

  (2)從中你發現了什么?這與復習題相比有什么不同?

  A、學生討論交流。

  B、引導學生回答:

  (3)教師引導學生明確:因為水的`體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。

  (4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:xy=k(一定)

  三、鞏固練習

  1、想一想:成反比例的量應具備什么條件?

  2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

  (1)路程一定,速度和時間。

  (2)小明從家到學校,每分走的速度和所需時間。

  (3)平行四邊形面積一定,底和高。

  (4)小林做10道數學題,已做的題和沒有做的題。

  (5)小明拿一些錢買鉛筆,單價和購買的數量。

  (6)你能舉一個反比例的例子嗎?

  四、全課小節

  這節課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

  五、課堂練習

  P45~46練習七第6~11題。

  教學目的:

  1、理解反比例的意義,能根據反比例的意義,正確的判斷兩種量是否成反比例。

  2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯系和發展變化的規律。

  3、初步滲透函數思想。

  教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數積一定,進而抽象概括出成反比例的關系式。

  教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。

《比例的意義》教案9

  教學要求:

  1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規律及其特征,能依據反比例的意義判斷兩種量成不成反比例關系。

  2.進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯的量成不成反比例的方法,培養學生判斷、推理的能力。

  教學重點:

  認識反比例關系的意義。

  教學難點:

  掌握成反比例量的變化規律及其特征。

  教學過程:

  一、鋪墊孕伏:

  1.正比例關系的意義是什么?怎樣用字母表示這種關系?

  判斷兩種相關聯量成不成正比例的關鍵是什么?

  2.下面哪兩種量成正比例關系?為什么?

  (1)時間一定,行駛的速度和路程。

  (2)數量一定,單價和總價。

  3.說一說工作效率、工作時間和工作總量之間的數量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?

  4.引入新課。

  如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)

  二、自主探究:

  1.教學例1。

  出示例1某運輸公司要運一批300噸的貨物。讓學生計算并完成填表任務。

  每天運的數量(噸) 10 20 30 40 50

  所需的天數 30 15 10 7.5

  在本上填表,并觀察思考能發現什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內容,相互之間討論,發現了什么。

  指名學生口答 討論結果得出:

  (1)每天運的噸數和需要的天數是兩種相關聯的量,(板書:兩種相關聯的量)需要的天數隨著每天運的噸數的變化而變化。

  (2)每天運的噸數縮小,需要的天數反而擴大,每天運的噸數擴大,需要的天數反而縮小。

  (3)可以看出它們的變化規律是:每天運的噸數和天數的積總是一定的。(板書:每天運的噸數和天數的積一定)因為每天運的噸數和天數的積都是300。提問:這里的300是什么數量?誰能說出這里的數量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數一定時,每天運的噸數和天數的積一定)

  2.教學例2

  出示例2

  請同學們按照剛才學習例1的方法,自己學習例2,仔細想想你發現了些什么?學生觀察思考后,小組討論:長方形的面積不變,當長發生變化時,長方形的寬發生變化嗎?變化的規律是怎樣的?

  3.概括反比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?

  (2)概括反比例意義。

  例1、例2里兩種相關聯的量,它們是什么關系的量呢?說明:像例1、例2里這樣兩種相關聯的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數的積一定。這樣兩種相關聯的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關聯的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用xy=k(一定)來表示。

  4.具體認識。

  (1)提問:例1里有哪兩種相關聯的量?這兩種量成反比例關系嗎?為什么,

  例2里的兩種量成反比例關系嗎?為什么?

  (2)提問:看兩種相關聯的量成不成反比例,關鍵要看什么?

  (3) 判斷。

  現在回過來看開始寫的關系式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯的量變化時乘積一定,那它們就是成反比例的量,相互之間的關系就是反比例關系。

《比例的意義》教案10

  教學內容:教材第30~31頁比例的意義和基本性質,練習六第1~5題。

  教學要求:使學生理解比例的意義和基本性質,能用比例的意義或性質判斷兩個比成不成比例;通過教學培養學生初步的綜合、概括能力。

  教學重點:理解比例的意義和基本性質。

  教學難點:用比例的意義或性質判斷兩個比成不成比例。

  教學理念:以學生為主體,把較多的時間和空間留給學生探索、交流、概括。

  教具、學具準備:小黑板,教學課件

  教學步驟

  一、復習鋪墊

  l.什么叫做兩個數的比?請你說出兩個比。(教師板書)

  2.什么是比的比值?上面兩個比的比值是多少?

  3.引入新課。

  我們已經認識了比,知道怎樣求比值。今天就根據比和比值來學習比例,并且認識比例的基本性質。(板書課題)

  二、導入新課

  1.教學比例的意義。

  讓學生算出下面各比的比值,再比較每組里兩個比的比值有什么關系。(指名板演)

  (1) 3 :5 24 :40 (2) :7.5 :3

  追問:比值相等,說明每組里兩個比怎樣?

  指出:表示兩個比相等的式子叫做比例。

  說一說,上面兩個等式表示的是怎樣的式子?

  2.下面兩個比之間的哪些○里能填“=”,為什么?

  1 :2○3 :6 0.5 :0.2○5 :2

  1.5 :3○15 :3:2○:1

  提問:填了等號后的式子是什么? 1.5 :3和15 :3為什么不能組成比例?要判斷兩個比能不能組成比例,可以看它們的什么?指出:要判斷兩個比是不是相等,可以看比值是不是相等;也可以把兩個比化簡后看是不是相同的兩個比。

  3.教學例1。

  出示例1,讓學生先寫出兩次買練習本的錢數和本數的比。提問:怎樣判斷這兩個比能不能組成比例?讓學生判斷并寫出比例。提問:能不能組成比例?(板書比例式)為什么?強調:只有兩個比值相等的比才能組成比例。

  讓學生根據比例的意義,在( )里填上適當的數。

  3 :6=5 :( ) 0.8 :( )=1 :

  4.教學比例的基本性質。

  向學生說明比例各部分的名稱。

  讓學生看開始組成的兩個比例,說一說其中的內項和外項。讓學生計算上面比例里兩個外項的積和兩個內項的積,并要求觀察,從中發現什么。

  5.判斷能否組成比例。

  出示“3.6 :1.8和0.5 :0.25”。讓學生自己根據比例的基本性質判斷,如果能組成比例就寫出這個比例式。提問:2.6 :1.8和0.5 :0.25能組成比例嗎?

  強調指出:根據比例的基本性質,也可以判斷兩個比能不能組成比例,判斷時可以先把兩個比看成是比例。如果兩個外項的積等于兩個內項的積,兩個比就能組成比例;如果不相等,就不能組成比例。

  如果學生有困難,啟發用比值相等的方法推算。填寫以后,學生回答:為什么填這個數?

  讓學生口答結果。提問:從上面的計算里,你發現了什么,出示比例的基本性質,并讓學生說一說。如果把比例寫成分數形式,請你說一說外項和內項。提問:在這個比例里交叉相乘的積有什么關系?追問:為什么交叉相乘的積相等?

  三、鞏固練習

  1. 提問:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎樣判斷兩個比能不能組成比例?

  2. 完成“練一練”。

  指名4人板演.集體訂正.說說是怎樣判斷的?

  3.做練習六第1題。

  讓學生做在練習本上。如果能組成比例就再寫出比例。提問練習情況并板書,讓學生說明“為什么”。

  4.做練習六第2題。

  讓學生判斷,在練習本上寫出來。提問:哪一個比和:4組成比例?為什么,(比值相等,或化簡后兩個比相同)

  5.完成練習六第3題。

  學生先觀察、計算,然后口答,說明理由。

  四、全課小結

  這堂課學習了什么內容?什么叫做比例?比例的基本性質是什么?可以怎樣判斷兩個比能不能組成比例?

  五、布置作業

  練習六第4、5題。

《比例的意義》教案11

  教學內容

  教科書第52頁例1,第55頁課堂活動第1題及練習十二1,2,3題。

  教學目標

  1.使學生通過具體問題情境認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系,能找到生活中成正比例的實例,并進行交流。

  2.通過探索正比例意義的教學活動,使學生感受事物中充滿著運動、變化的思想,并且特定的事物發展、變化是有規律的。

  3.通過觀察、交流、歸納、推斷等教學活動,感受數學思維過程的合理性,培養學生的觀察能力、推理能力、歸納能力和靈活應用知識的能力。

  教學重點

  認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系。

  教學難點

  理解正比例的意義,感受事物中充滿著運動、變化的思想,并且特定的事物發展、變化是有規律的。

  教學準備

  教具:多媒體課件。

  學具:作業本,數學書。

  教學過程

  一、聯系生活,復習引入

  (1)下面是居委會張阿姨負責的小區水費收繳情況,用這個表中的數能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

  (2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數量呢?

  教師:這些數量之間藏著不少的知識,今天這節課我們就來研究這些數量間的一些規律和特征。

  二、自主探索,學習新知

  1.教學例1

  用課件在剛才準備題的表格中增加幾列數據,變成表。

  教師:請同學們觀察這張表,先獨立思考后再討論、交流:從這張表中你發現了什么規律?并根據這種規律幫助張阿姨把表格填寫完整。

  教師根據學生的回答將表格完善,并作必要的板書。

  教師:同學們發現表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關聯的。

  板書:相關聯

  教師:你們還發現哪些規律?

  學生在這里主要體會水費除以用水量得到的每噸水單價始終是不變的,教師可根據學生的回答板書出來,便于其他學生觀察:

  教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數。

  板書:

  2.教學試一試

  教師:我們再來研究一個問題。

  課件出示第52頁下面的試一試。

  學生先獨立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個表格中的數據嗎?

  教師根據學生的回答歸納如下:

  表中的路程和時間是相關聯的量,路程隨著時間的變化而變化。

  時間擴大若干倍,路程也擴大相同的倍數;時間縮小若干倍,路程縮小相同的倍數。

  路程與時間的比值是一定的,速度是每時80 km,它們之間的關系可以寫成路程時間=速度(一定)

  3.教學議一議

  教師:我們研究了上面生活中的兩個問題,誰能發現它們之間的共同點呢?

  引導學生歸納出這兩個問題中都有相關聯的量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數,所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關系叫做成正比例關系。

  4.教學課堂活動

  教師:請大家說一說生活中還有哪些是成正比例的量。

  三、夯實基礎,鞏固提高

  (1)完成練習十二的第1題。

  教師:請同學們用所學知識判斷一下,下面表中的兩種量成正比例關系嗎?為什么?

  學生獨立思考,先小組內交流再集體交流。

  (2)完成練習十二的第2題。

  四、全課小結

  教師:這節課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?

《比例的意義》教案12

  教學內容:

  比例的意義和基本性質 (省義務教材第十二冊)

  教學目標:

  1、理解和掌握比例的意義和基本性質,認識比例的各部分的名稱,體會數學的規律美。

  2、利用比例知識解決實際問題。

  3、培養學生自主參與的意識、主動探究的精神,激發學生的審美愉悅。培養學生進行初步的觀察、分析、比較、判斷、概括的能力,發展學生思維。

  教學過程:

  一、 談話導入,創設情境:

  出示CAI課件(一張微型照片)。你能看出這是杭州哪一個景點的照片?的確,照片太小了,那現在老師將這張照片按一定比例放大一些,。由此出現一張平湖秋月的風景照。【誘發審美注意】

  我們的祖國方圓960萬平方公里,幅員遼闊卻能在一張小小的地圖上清晰可見各地位置。建筑設計師可將濱江四區的設計構想展示在一張紙上。這些,都要用到比例的知識,我們今天就來學習有關比例的一些知識。

  二、 自主探究,學習新知

  (一) 教學比例的意義

  1、 8厘米

  出示

  6厘米

  4厘米

  3厘米

  (1)根據表中給出的數量寫出有意義的比。

  (2)哪些比是相關聯的?

  (3)根據以往經驗,可將相等的兩個比怎樣?(用等號連接)

  教師并指出這些式子就是比例。

  2、 讓學生任意寫出比例,并讓學生用自己的語言描述比例的意義。

  3、 教師板書:表示兩個比相等的式子叫做比例。比例也可用分數形式表示。

  4、 寫出比值是1/3的兩個比,并組成比例。

  (二) 教學比例的基本性質

  1、 比例和比有什么區別?

  2、 認識比例的各部分

  (1)讓學生自己取。

  (2)組成比例的四個數叫做比例的項,兩端的兩項叫做比例的

  外項,中間的兩項叫做比例的內項。

  板書: 8 : 6 = 4 : 3

  內 項

  外 項

  (3)讓學生找出自己舉的比例的內外項。

  ( )

  12

  2

  ( )

  =

  (4)找出分數形式比例的內外項位置又是怎樣的?

  3、 出示 【啟迪學生思維,展開審美想象】

  (1) 這個比例已知的是哪兩項,要求的又是哪兩項?學生試填。

  (2) 學生反饋,教師板書。

  (3) 你發現了什么?

  (4) 指導學生概括出比例的基本性質,并板書:在比例里,兩個外項之積等于兩個內項之積。

  4、 用比例性質驗證你所寫比例是否正確。

  5、練習 8 : 12 = X : 45

  0.5

  X

  20

  32

  =

  求比例中的未知項,叫做解比例。

  如何證明你的解是正確的?

  (三) 小結:今天這堂課你有什么收獲?

  三、 鞏固練習

  1、下面哪幾組中的兩個比可以組成比例。

  4

  1

  12 : 24 和18 : 36

  0.4 : 和0.4 : 0.15

  14 : 8 和7 : 4

  5

  2

  2、根據18 x 2 = 9 x 4 寫出比例。【體會到數學的邏輯美,規律美】

  3、從1 、8、0.6、3、7五個數中

  (1) 選出四個數,組成比例。

  (2) 任意選出3個數,再配上另一個數,組成比例。

  (3) 用所學知識進行檢驗。

  四、 實際應用

  不久前,汪駿強家的菜地邊高高矗立起一個新鐵塔,這天午后,陽光明媚,鄰居家剛讀一年級的小明又拉著汪駿強來到鐵塔下,玩著玩著,小明問道:“強強哥哥,這鐵塔干嘛用?”“鐵塔嘛,架設高壓線用的,以后等電線架好了,可不能再來玩了,更不能攀登,高壓線可危險了!”“那這個鐵塔有多高壓呀?”

  同學們,如果你是汪駿強,你準備怎么辦?

  執教者 方 艷

《比例的意義》教案13

  教學目標:

  1、 理解比例的意義,認識比例各部分名稱,初步了解比和比例的區別;理解比例的基本性質。

  2、 能根據比例的意義和基本性質,正確判斷兩個比能否組成比例。

  3、 在自主探究、觀察比較中,培養學生分析、概括能力和勇于探索的精神。

  4、 通過自主學習,讓學生經經歷探究的過程,體驗成功的快樂。

  教學重、難點:

  重點:理解比例的意義和基本性質,能正確判斷兩個比能否組成比例。

  難點:自主探究比例的基本性質。

  教學準備:CAI課件

  教學過程:

  一、復習、導入

  1、 談話:同學們,我們已經學過了比的有關知識,說說你對比已經有了哪些了解?(生答:比的意義、各部分名稱、基本性質等。)

  還記得怎樣求比值嗎?

  2、 課件顯示:算出下面每組中兩個比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [評析:從學生已有的知識經驗入手,方便快捷,為新課做好準備。]

  二、認識比例的意義

  (一)認識意義

  1、 指名口答上題每組中兩個比的比值,課件依次顯示答案。

  師問:口算完了,你們有什么發現嗎?(3組比值相等,1組不等)

  2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30 。

  (課件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)

  最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數據隱去)

  數學中規定,像這樣的一些式子就叫做比例。(板書:比例)

  [評析:通過口算求比值,發現有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學,就需要像這樣做好已有經驗與新知識的銜接。]

  3、今天這節課我們就一起來研究比例,你想研究哪些內容呢?

  (生答:想研究比例的意義,學比例有什么用?比例有什么特點……)

  5、 那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?

  (根據學生的回答,教師抓住關鍵點板書:兩個比 比值相等)

  同學們說的比例的意義都正確,不過數學中還可以說得更簡潔些。

  課件顯示:表示兩個比相等的式子叫做比例。

  學生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。

  [評析:比例的意義其實是一種規定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環節讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養。在總結得出概念之后,教師沒有嘎然而止,而是繼續引導學生讀一讀,從正反兩方面進一步認識比例,加深了學生對比例的內涵的理解。]

  (二)練習

  1、 出示例1 根據下表,先分別寫出兩次買練習本的錢數和本數的比,再判斷這兩個比能否組成比例。

  第一次

  第二次

  買練習本的錢數(元)

  1.2

  2

  買的本數

  3

  5

  (1)學生獨立完成。

  (2)集體交流,明確:根據比例的意義可以判斷兩個比能否組成比例。

  2、完成練習紙第一題。

  一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。

  ⑴分別寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?

  ⑵分別寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?

  [評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。練習1其實是對例題的巧妙補充。]

  3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區別?

  (引導學生歸納出:比例由兩個比組成,有四個數;比是一個比,有兩個數)

  4、教學比例各部分的名稱

  (1) 課件出示: 3 : 5

  前項 后項

  (2) 課件出示:3 : 5 = 18 : 30

  內項

  外項

  (3) 如果把比例寫成分數的形式,你能指出它的內、外項嗎?

  課件出示:3/5=18/30

  [評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區別,再由比的各部分名稱到比例的各部分名稱,環環相扣、自然流暢、一氣呵成。]

  5、小結、過渡:

  剛才我們已經研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規律或者性質,有興趣嗎?

  三、探究比例的基本性質

  1、課件先出示一組數:3、5、10、6

  再出示:運用這四個數,你能組成幾個等式?(等號兩邊各兩個數)

  2、 獨立思考,并在作業本上寫一寫。

  學生組成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根據學生回答板書: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引導發現規律

  (1)還有不同的乘法算式嗎?(沒有,交換因數的位置還是一樣)

  乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)

  (2)那么,這些比例式中,有沒有什么相同的特點或規律呢?仔細觀察,你能發現比例的性質或規律嗎?

  (3)學生先獨立思考,再小組交流,探究規律。

  (板書:兩個外項的積等于兩個內項的積。)

  [評析:“運用這四個數,你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發揮交流的作用,讓每一個學生的思考都變成有用的教學資源。考慮到直接探究比例的基本性質學生會有困難,教師作了適當的引導,通過乘法算式和比例式的橫向聯系,讓學生在變中尋不變,從而探究出性質。]

  4、驗證:是不是任意一個比例都有這樣的規律?

  ⑴課件顯示復習題(4組),學生驗證。

  ⑵學生任意寫一個比例并驗證。

  ⑶完整板書:在比例里,兩個外項的積等于兩個內項的積。這就是比例的基本性質。

  [評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]

  5、思考3/5=18/30是那些數的乘積相等。課件顯示:交叉相乘。

  6、小結:剛才我們是怎樣發現比例的基本性質的?(寫了一些比例式,觀察比較,發現規律,再驗證)

  四、 綜合練習

  完成練習紙2、3、4

  附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判斷下面哪一個比能與 1/5:4組成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合適的數。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [評析:習題的安排旨在對比例的意義和基本性質進行進一步的鞏固和應用,最后一道開放題答案不唯一,意在進一步讓學生體驗和感悟數學的“變”與“不變”的美妙與統一。]

  五、全課總結(略)

《比例的意義》教案14

  教學內容:教科書第19—21頁正比例的意義,練習六的1—3題。

  教學目的:

  1.使學生理解正比例的意義,能夠根據正比例的意義判斷兩種量是不是成正比例。

  2.初步培養學生用事物相互聯系和發展變化的觀點來分析問題。

  3.初步滲透函數思想。

  教具準備:投影儀、投影片、小黑板。

  教學過程():

  一、復習

  用,投影片逐一出示下面的題目,讓學生回答。

  1.已知路程和時間,怎樣求速度?板書: =速度

  2.已知總價和數量,怎樣求單價?板書: =單價

  3.己知工作總量和工作時間,怎樣求工作效率?板書:

  =工作效率

  4,已知總產量和公頃數,怎樣求公頃產量?板書: =公頃產量

  二、導人新課

  教師:這是我們過去學過的一些常見的數量關系。這節課我們進一步來研究這些數量關系中的一些特征,首先來研究這些數量之間的正比例關系。(板書課題:正比例的意義)

  三、新課

  1.教學例1。

  用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:

  提問:

  “誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)

  “表中有哪幾種量?”

  “當時間是1小時,路程是多少?當時間是2小時,路程又是多少?……”

  “這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)

  教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關聯的量。(板書:兩種相關聯的量)“時間和路程是兩種相關聯的量,路程是怎樣隨著時間變化而變化的呢?”

  教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應的路程也擴大2倍3時間擴大3倍,對應的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應的路程也縮小8倍;時間縮小7倍,對應的路程也縮小7倍……時間縮小2倍,對應的路程也縮小2倍。通過觀察,我們發現路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規律是怎么樣的呢?

  讓每一小組(8個小組)的同學選一組相對應的數據,計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學生雙察這些比和它們的比值,看有什么規律。教師板書:相對應的兩個數的比值(也就是商)一定。

  然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關系式嗎?板書: =速度(—定)

  教師小結:通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關聯的量。)路程和時間這兩種量的變化規律是什么呢?(路程和時間的比的比值(速度)總是一定的。)

  2.教學例2。

  出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數和總價的表。

  讓學生觀察上表,并回答下面的問題:

  (1)表中有哪兩種量?

  (2)米數擴大,總價怎樣?米數縮小,總價怎樣?

  (3)相對應的總價和米數的比各是多少?比值是多少?

  當學生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……

  然后進一步問:

  “這個比值實際上是什么?你能用一個關系式表.示它們的關系嗎?”板書: =單價(一定)

  教師小結:通過剛才的思考和分析,我們知道總價和米數也是兩種相關聯的量,總價是隨著米數的變化而變化的,米數擴大,總價也隨著擴大;米數縮小,總價也隨著縮小。它們擴大、縮小的規律是:總價和米數的比的比值總是一定的。

  3.抽象概括正比例的意義。

  教師:請同學們比較一下剛才這兩個例題,回答下面的問題;

  (1)都有幾種量?

  (2)這兩種量有沒有關系?

  (3)這兩種量的比值都是怎樣的?

  教師小結:通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關聯的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關系叫做正比例關系。(板書出教科書上第’20頁的倒數第二段。)

  接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學生想一想:在例2中,有哪兩種相關聯的量:它們是不是成正比例的量?為什么?

  最后教師提出:如果我們用字母X,y表示兩種相關聯的量.用字母K表示它們的比值,你能將正比例關系用字母表示出來嗎?

  學生回答后,教師板書: =K(一定)

  4,教學例3。

  出示例3:每袋面粉的重量一定,面粉的總重量和袋數是不是成正比例?

  教師引導:

  “面粉的總重量和袋數是不是相關聯的量?”·

  “面粉的總重量和袋數有什么關系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的總重量和袋數的比的比值是一定的,所以面粉的總重量和袋數成正比例。”

  5.鞏固練習。

  讓學生試做第21頁“做一做”中的題目。其中(3)要求學生說明這個比值所表示的意義,學生說成是生產效率和每天生產的噸數都可以。

  四、課堂練習

  完成練習六的第1—3題。

  第1題,做題前,讓學生想一想:成正比例的量要滿足哪幾個條件?然后讓學生算出各表中兩種相對應的數的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關系式進行判斷。第(3)小題,要問一問學生為什么正方形的邊長和面積不成比例。(因為相對應的正方形的邊長和面積的比的比值不相等。)

  第2題,先讓學生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3題,可先讓同桌的同學互相舉例,然后再指名舉出成正比例的例子。

《比例的意義》教案15

  教學內容:

  《反比例的意義》是六年制小學數學(北師版)第十二冊第二單元中的內容。是在學過“正比例的意義”的基礎上,讓學生理解反比例的意義,并會判斷兩個量是否成反比例關系,加深對比例的理解。

  學生分析:

  在此之前,他們學習了正比例的意義,對“相關聯的量”、“成正比例的兩個量的變化規律”、“如何判斷兩個量是否成正比例”已經有了認識,這為學習《反比例的意義》奠定了基礎。

  教學目標:

  1、知識與技能目標:使學生認識成反比例的量,理解反比例的意義,并學會判斷兩種相關聯的量是否成反比例。進一步培養學生觀察、學析、綜合和概括等能力。初步滲透函數思想。

  2、過程與方法:為學生營造一個經歷知識產生過程的情境。

  3、情感與態度目標:使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數學的信心。

  教學重點:理解反比例的意義。

  教學難點:兩種相關聯的量的變化規律。

  教學準備:學生準備:復習正比例關系,預習本節內容。

  教師準備:投影片3張,每張有例題一個。

  教學過程設計:

  一、談話引入,激發興趣。

  1、談話:通過最近一段時間的觀察,我發現同學們越來越聰明了,會學數學了,這是因為同學們掌握了一定的數學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節課我們用同樣的學習方法來研究比例的另外一個規律。

  2、導入:在實際生活中,存在著許多相關聯的量,這些相關聯的量之間有的是成正比例關系,有的成其他形式的關系,讓我們一起來探究下面的問題。

  二、創設情景引新:

  (出示:十二個小方塊)

  師:同學們,這十二個小方塊有幾種排法?

  (生答后,老師板書下表的排列過程)

  每行個數1234612

  行數1264321

  師:請你觀察上表中每行個數與行數成正比例關系嗎?為什么?

  生:……

  師:這兩種量這間有關系嗎?有什么關系?這就是我們今天要研究的內容。

  (出示課題:反比例的意義)

  三、合作自學探知

  1、學習例4。

  (1)出示例4。

  師:請同學們在小組內互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。

  A、表中有哪兩種量?

  B、怎樣隨著每小時加工的數量變化?

  c、每兩個相對應的數的乘積各是多少?

  學生討論……

  生反饋:……

  師:能不能舉出三個例子

  生:1020=6002030=6003020=600……

  師:這里的600是什么數量?你能說出這里的數量關系式嗎?

  生:……

  [板書出示:每小時加工數加工時間=零件總數(一定)]

  2、自學例5:

  (1)出示例5:

  師:先請同學們按要求在書上填空,并說說是怎樣算的?根據什么?

  生:……

  師:模仿例4的方法,提出三個問題自己學習例5(出示三個問題)

  生:……

  3、討論準備題:

  (1)請你根據例4的方法,四人小組內說一說。

  (2)請你舉例說明表中每行個數與行數是什么關系?為什么?

  四、比較感知特征

  綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什么共同的特征?

  生:……

  五、引導概括意義

  1、概括反比例意義。

  學生在說相同點時老師邊引導邊說明。當學生說出三個特征后,教師板書這三個特征。

  師:請同學們根據我們上節課學的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關系?

  生:……

  師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關系。

  學生互相練習……

  師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?

  生:……

  師:例4、例5和準備題中的兩種量成不成反比例?為什么?

  生:……(學生回答后,老師及時糾正)

  師:如果用x和y表示兩種相關聯的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?

  生:……[板書出示y=k(一定)]

  2、教學例6。

  (1)課件出示例6。

  (學生讀題、思考)

  師:怎樣判斷兩種量成不成反比例?

  師:哪位同學說說,每天播種的公頃數和要用的天數是不是成反比例?為什么?

  生:因為每天播種的公頃數要用的天數=播種的總公頃數(一定),所以每天播種的公頃數和要用的天數是成反比例的量。

  六、小結:這節課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?

  [案例分析]:

  通過聯系生活實際,學習成反比例的量,體會數學與生活的緊密聯系。不對研究的過程做詳細的引導和說明,只提供研究的素材和數據,出示關鍵性的結論,充分發揮學生的主動性,以體現自主探究、合作交流的學習過程,獲得學習成功的體驗。通過引導學生觀察、分析、比較、歸納,形成良好的思維習慣和思維品質。同時加深學生對數量關系的認識,滲透函數思想,為中學的數學學習做好知識準備。學習方式的轉變是新課改的顯著特征,就是把學習過程中的分析、發現、探究、創新等認識活動凸顯出來。在設計《反比例的意義》時,根據學生的知識水平,對教學內容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。

【《比例的意義》教案】相關文章:

比例的意義和基本性質說課稿11-12

比例的意義和基本性質說課11-12

比例的意義和基本性質教學設計03-17

比例的意義和基本性質說課稿4篇11-12

比例的意義和基本性質數學課件05-03

生命的意義心理健康教案03-21

小數的意義和讀寫法教案03-29

分數的意義教案匯編9篇03-27

有關分數的意義教案3篇03-20

分數的意義教案合集9篇03-13