亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

因式分解教案

時間:2022-03-15 09:07:03 教案 我要投稿

因式分解教案五篇

  作為一位優秀的人民教師,通常需要準備好一份教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。怎樣寫教案才更能起到其作用呢?下面是小編為大家整理的因式分解教案五篇,歡迎閱讀與收藏。

因式分解教案五篇

因式分解教案五篇1

  教學目標:

  1、知識與技能:掌握運用提公因式法、公式法分解因式,培養學生應用因式分解解決問題的能力。

  2、過程與方法:經歷探索因式分解方法的過程,培養學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法。

  3、情感態度與價值觀:通過因式分解的學習,使學生體會數學美,體會成功的自信和團結合作精神,并體會整體數學思想和轉化的數學思想。

  教學重、難點:用提公因式法和公式法分解因式。

  教具準備:多媒體課件(小黑板)

  教學方法:活動探究法

  教學過程:

  引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解。什么叫因式分解?

  知識詳解

  知識點1 因式分解的定義

  把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式。

  【說明】 (1)因式分解與整式乘法是相反方向的變形。

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來檢驗。

  怎樣把一個多項式分解因式?

  知識點2 提公因式法

  多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y—xy+y=y(3x2—x); (2)x2—2x+3=(x—1)2+2;

  (3)x2y2+2xy—1=(xy+1)(xy—1); (4)xn(x2—x+1)=xn+2—xn+1+xn。

  典例剖析 師生互動

  例1 用提公因式法將下列各式因式分解。

  (1) —x3z+x4y; (2) 3x(a—b)+2y(b—a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當的變形, 再把b—a化成—(a—b),然后再提取公因式。

  小結 運用提公因式法分解因式時,要注意下列問題:

  (1)因式分解的結果每個括號內如有同類項要合并,而且每個括號內不能再分解。

  (2)如果出現像(2)小題需統一時,首先統一,盡可能使統一的個數少。這時注意到(a—b)n=(b—a)n(n為偶數)。

  (3)因式分解最后如果有同底數冪,要寫成冪的形式。

  學生做一做 把下列各式分解因式。

  (1) (2a+b)(2a—3b)+(2a+5b)(2a+b) ;(2) 4p(1—q)3+2(q—1)2

  知識點3 公式法

  (1)平方差公式:a2—b2=(a+b)(a—b)。即兩個數的平方差,等于這兩個數的和與這個數的差的積。例如:4x2—9=(2x)2—32=(2x+3)(2x—3)。

  (2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方。例如:4x2—12xy+9y2=(2x)2—2·2x·3y+(3y)2=(2x—3y)2。

  探究交流

  下列變形是否正確?為什么?

  (1)x2—3y2=(x+3y)(x—3y);(2)4x2—6xy+9y2=(2x—3y)2;(3)x2—2x—1=(x—1)2。

  例2 把下列各式分解因式。

  (1) (a+b)2—4a2;(2)1—10x+25x2;(3)(m+n)2—6(m+n)+9。

  分析:本題旨在考查用完全平方公式分解因式。

  學生做一做 把下列各式分解因式。

  (1)(x2+4)2—2(x2+4)+1; (2)(x+y)2—4(x+y—1)。

  綜合運用

  例3 分解因式。

  (1)x3—2x2+x; (2) x2(x—y)+y2(y—x);

  分析:本題旨在考查綜合運用提公因式法和公式法分解因式。

  小結 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式。 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止。

  探索與創新題

  例4 若9x2+kxy+36y2是完全平方式,則k= 。

  分析:完全平方式是形如:a2±2ab+b2即兩數的平方和與這兩個數乘積的2倍的和(或差)。

  學生做一做 若x2+(k+3)x+9是完全平方式,則k= 。

  課堂小結

  用提公因式法和公式法分解因式,會運用因式分解解決計算問題。

  各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。

  自我評價 知識鞏固

  1、若x2+2(m—3)x+16是完全平方式,則m的值等于( )

  A、3 B、—5 C、7 D、7或—1

  2、若(2x)n—81=(4x2+9)(2x+3)(2x—3),則n的值是( )

  A、2 B、4 C、6 D、8

  3、分解因式:4x2—9y2= 。

  4、已知x—y=1,xy=2,求x3y—2x2y2+xy3的值。

  5、把多項式1—x2+2xy—y2分解因式

  思考題 分解因式(x4+x2—4)(x4+x2+3)+10。

因式分解教案五篇2

  【教學目標】

  1、了解因式分解的概念和意義;

  2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

  【教學重點、難點】

  重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。

  【教學過程】

  ㈠、情境導入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

  ㈡、探究新知

  1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

  3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式

  ㈢、前進一步

  1、讓學生繼續觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?

  2、因式分解與整式乘法的關系:

  因式分解

  結合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

  結論:因式分解與整式乘法的相互關系——相反變形。

  ㈣、鞏固新知

  1、 下列代數式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。

  ㈤、應用解釋

  例 檢驗下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2)。

  分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

  練習 計算下列各題,并說明你的算法:(請學生板演)

  (1)872+87×13

  (2)1012-992

  ㈥、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

  ㈦、課堂回顧

  今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

  ㈧、布置作業

  作業本(1) ,一課一練

  (九)教學反思:

因式分解教案五篇3

  一、教學目標

  【知識與技能】

  了解運用公式法分解因式的意義,會用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過程與方法】

  通過對平方差特點的辨析,培養觀察、分析能力,訓練對平方差公式的應用能力。

  【情感態度價值觀】

  在逆用乘法公式的過程中,培養逆向思維能力,在分解因式時了解換元的思想方法。

  二、教學重難點

  【教學重點】

  運用平方差公式分解因式。

  【教學難點】

  靈活運用公式法或已經學過的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學過程

  (一)引入新課

  我們學習了因式分解的定義,還學習了提公因式法分解因式。如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,大家知道因式分解與多項式乘法是互逆關系,能否利用這種關系找到新的因式分解的方法呢?

  大家先觀察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他們有什么共同的特點?你可以得出什么結論?

  (二)探索新知

  學生獨立思考或者與同桌討論。

  引導學生得出:①有兩項組成,②兩項的符號相反,③兩項都可以寫成數或式的平方的形式。

  提問1:能否用語言以及數學公式將其特征表述出來?

因式分解教案五篇4

  引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解。什么叫因式分解?

  知識詳解

  知識點1 因式分解的定義

  把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式。

  【說明】 (1)因式分解與整式乘法是相反方向的變形。

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來檢驗。

  怎樣把一個多項式分解因式?

  知識點2 提公因式法

  多項式ma+mb+mc中的各項都有一個公共的。因式m,我們把因式m叫做這個多項式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn。

  典例剖析 師生互動

  例1 用提公因式法將下列各式因式分解。

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當的變形, 再把b-a化成-(a-b),然后再提取公因式。

  小結 運用提公因式法分解因式時,要注意下列問題:

  (1)因式分解的結果每個括號內如有同類項要合并,而且每個括號內不能再分解。

  (2)如果出現像(2)小題需統一時,首先統一,盡可能使統一的個數少。這時注意到(a-b)n=(b-a)n(n為偶數)。

  (3)因式分解最后如果有同底數冪,要寫成冪的'形式。

  學生做一做 把下列各式分解因式。

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知識點3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b)。即兩個數的平方差,等于這兩個數的和與這個數的差的積。例如:4x2-9=(2x)2-32=(2x+3)(2x-3)。

  (2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方。例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2。

  探究交流

  下列變形是否正確?為什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2。

  例2 把下列各式分解因式。

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9。

  分析:本題旨在考查用完全平方公式分解因式。

  學生做一做 把下列各式分解因式。

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1)。

  綜合運用

  例3 分解因式。

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本題旨在考查綜合運用提公因式法和公式法分解因式。

  小結 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式。 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止。

  探索與創新題

  例4 若9x2+kxy+36y2是完全平方式,則k= 。

  分析:完全平方式是形如:a2±2ab+b2即兩數的平方和與這兩個數乘積的2倍的和(或差)。

  學生做一做 若x2+(k+3)x+9是完全平方式,則k= 。

  課堂小結

  用提公因式法和公式法分解因式,會運用因式分解解決計算問題。

  各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。

  自我評價 知識鞏固

  1。若x2+2(m-3)x+16是完全平方式,則m的值等于( )

  A。3 B。-5 C。7。 D。7或-1

  2。若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

  A。2 B。4 C。6 D。8

  3。分解因式:4x2-9y2= 。

  4。已知x-y=1,xy=2,求x3y-2x2y2+xy3的值。

  5。把多項式1-x2+2xy-y2分解因式

  思考題 分解因式(x4+x2-4)(x4+x2+3)+10。

  附:板書設計

  因式分解

  因式分解的定義 探究交流 探索創新

  提公因式法 典例剖析 課堂小結

  公式法 綜合運用 自我評價

因式分解教案五篇5

  一、教材分析

  1、教材的地位與作用

  “整式的乘法”是整式的加減的后續學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據原有的知識基礎,或運用乘法的各種運算規律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。

  因式分解是一種常用的代數式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

  2、教學目標

  (1)會推導乘法公式

  (2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。

  (3)會用提公因式法、公式法進行因式分解。

  (4)了解因式分解的一般步驟。

  (5)在因式分解中,經歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

  3、重點、難點和關鍵

  重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

  難點:正確運用乘法公式;正確分解因式。

  關鍵:正確理解乘法公式和因式分解的意義。

  二、本單元教學的方法和策略:

  1.注重知識形成的探索過程,讓學生在探索過程中領悟知識,在領悟過程中建構體系,從而更好地實現知識體系的更新和知識的正向遷移.

  2.知識內容的呈現方式力求與學生已有的知識結構相聯系,同時兼顧學生的思維水平和心理特征.

  3.讓學生掌握基本的數學事實與數學活動經驗,減輕不必要的記憶負擔.

  4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數學的應用價值,逐步養成談數學、想數學、做數學的良好習慣.

  三、課時安排:

  2.1平方差公式 1課時

  2.2完全平方公式 2課時

  2.3用提公因式法進行因式分解 1課時

  2.4用公式法進行因式分解 2課時

【因式分解教案五篇】相關文章:

有關因式分解教案3篇03-05

關于因式分解教案四篇02-12

有關因式分解教案四篇02-12

因式分解教案匯編五篇02-27

《因式分解的簡單應用》導學案PPT課件教案05-13

因式分解同步的練習題05-27

初中因式分解同步練習題05-26

關于因式分解課后練習題05-27

因式分解同步練習題以及答案05-27

整式的乘除與因式分解測試卷07-26