亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

畫正多邊形教案

時間:2021-11-26 09:25:30 教案 我要投稿

畫正多邊形教案

  作為一名為他人授業解惑的教育工作者,就難以避免地要準備教案,教案是保證教學取得成功、提高教學質量的基本條件。那要怎么寫好教案呢?以下是小編幫大家整理的畫正多邊形教案,僅供參考,希望能夠幫助到大家。

畫正多邊形教案

畫正多邊形教案1

  教學內容:LOGO語言重復命令

  知識目的:

  1、使學生了解重復命令的特點。

  2、掌握重復命令的用法,能使用重復命令畫出各種圖形。

  能力目標:

  1、能總結重復的內容

  2、重復的次數

  情感目標:

  1、增強學生學習信息技術的興趣。

  2、培養學生的協作意識。

  教學重點:重復命令的格式。

  教學時間:一課時

  教學過程:

  1.畫正方形

  ⑵屏幕顯示畫正方形的8條命令,學生觀察有何特點。畫正方形的命令是由4組完全相同的命令(fd 50 rt 90)組成。

  ⑶屏幕顯示“repeat 4[fd 50 rt 90]”,請同學在LOGO語言中輸入,看一看有何效果。(也畫出了一個正方形)

  ⑷教師講解:這條命令也可以畫正方形,而且比剛才我們輸入的8條命令要簡潔了許多。這就是重復命令。用lg語言繪畫時,檢查要重復相同格式的命令,使輸入格式變得非常繁瑣。為了使命令變得簡單而且清晰,可以使用重復命令repeat,只要輸入這道命令,就可以完成許多相同的操作,小海龜就輕松多了。

  ⒉講解重復命令的格式

  通過“repeat 4[fd 50 rt 90]”了解重復命令的格式:repeat 重復的次數[重復執行的內容]強調講解該命令。

  從這節課開始我們學習重復命令,學會這條命令后,我們就能畫出很多由重復圖形組成的漂亮圖形。

  小海龜每次轉360÷5=72度。

  命令:REPEAT 5[FD 50 RT 72]或REPEAT 5[FD 50 RT ]邊長為60的正六邊形小海龜每次轉360÷6= 度。

  命令:REPEAT 6[FD RT ]或REPEAT 6[FD RT ]小海龜每次轉 度。

  命令:畫出來的是什么圖形?正多邊形的邊數越 畫出的圖形就越像

  3、小結

  今天,我們學習了重復命令,讓我們從比較繁瑣的鍵盤操作中得到了解放了。師生再溫習一下命令格式,需強調的地方。只要設置好下面三個數,就可以正確使用重復命令:

  1. 重復的次數;

  2. 每次走的步數;

  3. 每次轉動的角度。

  教學后記

畫正多邊形教案2

  教學目標:

  1、使學生能應用畫正多邊形解決實際問題;

  2、會應用“口訣”畫正五邊形的近似圖;

  3、能對較復雜的幾何圖形進行分解,然后通過畫正多邊形進行組合.

  4、通過解決實際問題培養學生會從實際問題中抽象出數學模型的抽象能力及用數學意識;

  5、通過運用正多邊形的有關計算和畫圖解決實際問題培養學生分析問題、解決問題的能力;

  6、通過對民間正五邊形近似畫法依據的探索,培養學生探索問題的能力;

  7、通過有關圖形的分解與組合培養學生的觀察能力、分解組合能力以及畫圖能力.

  教學重點:

  應用正多邊形的計算與畫圖解決實際問題

  教學難點:

  從實際問題中抽象出數學模型,然后正確運用正多邊形的有關計算,畫圖知識解決問題.

  教學過程:

  一、新課引入:

  上節課我們學習了運用量角器等分圓周畫正多邊形和運用尺規畫特殊的正多邊形,這節課我們繼續研究正多邊形的畫法在實際問題中的應用等.

  二、新課講解:

  在前幾課學習了正多邊形的有關計算和畫法的基礎上系統復習本部分內容并會綜合運用解決實際問題.本節有關“地基”問題的例題就是通過復習正方形畫法進而畫正八邊形,并對正八邊形進行有關計算.通過此例不僅復習了正多邊形的畫法、計算,而且復習了查三角函數表,解直角三角形的方法,更為重要的是培養了學生從實際問題中抽象出數學模型的能力,從而提高學生分析問題、解決問題的能力.通過正五邊形的民間近似畫法的教學弘揚民族文化,揭示其科學性,滲透實踐出真知的觀點.

  上節課我們學習了正多邊形的畫法,哪位同學能敘述用量角器等分圓法畫半徑3cm的.正十邊形?(安排中等生回答:先畫出半徑3cm的圓⊙o,然后用量角器畫出36°的中心角,然后依次畫36°的中心角,或者用圓規量出36°中心角所對弦長,依次截取即得正十邊形)出現誤差積累應如何處理?(安排中等生回答:1)適當調節正十邊形的邊長,2)可能情況下,重新設計畫圖步驟,減少產生誤差的機會)

  安排五名學生上黑板分別畫半徑3cm的圓內接正六邊形、內接正三角形、內接正十二邊形、內接正方形、內接正八邊形,其余學生在下面畫,然后師生共同評價所畫圖形的準確性.

  幻燈給出題目,如圖7-152,有一個亭子,它的地基是半徑為4m的正八邊形,(1)用1∶200的比例尺畫出地基平面圖;(2)求地基的邊長a8(精確到0.01m)和面積s8(精確到0.1m2)

  哪位同學知道亭子的地基指的是哪個地方?(安排知道的學生回答)哪位同學記得,什么是比例尺?(安排中下生回答,

  面圖上正八邊形的半徑應是多少?(安排中下生回答:r=2cm)

  請同學們畫出這個地基平面圖.

  大家回憶一下,怎樣求正八邊形的邊長?具體步驟是什么?(安排中等生回答:首先畫出基本計算圖,然后算出中心角的一半,∠aoc=22°30′.然后選三角函數)請同學們計算這個正八邊形的邊長.(a8≈3.06(m))

  pn·rn),現在要求這個正八邊形的面積,邊長已求出,周長自然知,還需求邊心距,哪位同學告訴我,求r8應選什么三角函數?(安排中下生回答:選∠aoc的余弦)請同學們求出r8來.(r8≈3.70(m))請同學們計算出這個地基的面積.(s8≈45.3(m2))

  我國民間相傳有五邊形的近似畫法,畫法口訣是:“頂五九,八五兩邊分”,它的意義如圖:(幻燈展示),如果正五邊形的邊長為10,作它的中垂線af,取af=15.4,在af上取fm=9.5,則am=5.9,過點m作be⊥af,在be上取bm=me=8.連結ab、bc、de、ea即可.

  例用民間相傳畫法口訣,畫邊長為20mm的正五邊形.

  分析:要畫邊長20mm的正五邊形,關鍵在于計算出口訣中各部分的尺寸,由于要畫的正五邊形與口訣正五邊形相似,所以要畫的正五邊形的各部分應與口訣正五邊形各部分對應成比例,由于口訣給出的是正五邊形的各部分的比例數,所以不妨設口訣正五邊形的邊cd=10mm.由已知知道要畫正五邊形的邊c′d′=20mm,因此可知要畫的正五邊形與口訣正五邊形的相似比為2∶1,因此只要將口訣正五邊形的各部分尺寸×2即得要畫的正五邊形的各部分尺寸.請同學們算出各部分的尺寸,并按口訣畫出正五邊形a′b′c′d′e′(安排一中等生上黑板畫,其余同學在練習本上畫)

  雖然這種畫法是近似畫法,但是這種畫法的精確度卻是很高的,哪位同學知道在五邊形abcde中∠cad的度數是多少?(中上生回答:36°,因正五邊形每一內角108°,ab=bc ∴∠bac=36°,同理∠dae=36°∴∠cad=36°)當然△cad為頂角36°的等腰三角形,為什么?(中等生回答:∵△abc≌aed(s.a.s),∴ac=ad.)前面

  取2.24作近似值,大家計算ac等于多少?(16.2)ac≈16.2也可說ac

  af≈15.4)剛才計算ac≈16.2,那么bm≈8.1,由于ab=10,請大家計算am又應等多少?(am≈5.9)剛才算出af≈15.4,am≈5.9,那么mf顯然約為9.5.至此我們已將口訣中的所有數據的來源探索清楚,從而證明我國民間的這種正五邊形的近似畫法精確度還是很高的.

  幻燈給出下列圖案:

  請同學們觀察這兩個圖形是怎么畫出來的,先看第一圖形,哪位同學知道的圓心和半徑?(安排中上生回答:中點是圓心,oa長是半徑)同理的圓心是的中點,的圓心是的中點,哪位同學發現這三個圓心與a、b、c三點恰好是圓o的什么點?(安排中下生回答:六等分點)

  請同學們畫出這個圖形.

  請同學們觀察第二個圖形,花瓣與⊙o的交點恰是⊙o的什么點?

  是半徑).

  請同學們畫出這個幾何圖案.

  三、課堂小結:

  本節課我們復習了正多邊形的畫法和有關計算,并運用這些知識去解決實際問題,學習了民間畫正五邊形的近似畫法并對其科學性進行了探討,最后學習了分解與組合有關正多邊形的幾何圖案.

  四、布置作業

  教材p.171中練習1;p.173中12;p.173中14.

畫正多邊形教案3

  一、教材及學生分析

  教材使用的是廣東省佛山區教學研究室編寫的五年級信息技術教材,本課是第一單元LOGO語言基本命令的第五課,在這之前學生已經學習了小海龜的一些基本命令,如前進,后退、左轉、右轉、提筆、落筆等命令,本課主要目的是利用前進和右轉等基本命令畫正多邊形,要求學生發現正多邊形的特點,找到畫正多邊形的規律,從而知道如何計算小海龜的轉動角度,并學會用重復命令(repeat n [一組命令]),完成同樣的任務。本課內容分為兩節課學習,本課為第一課時,第二課時是學生做練習,鞏固學習到的知識。

  二、教學目標

  1、知識目標:學會指揮小海龜準確地畫出正多邊形,學會使用repeat命令。

  2、能力目標:通過編程練習,培養嚴謹、認真、科學的編程習慣,提高計算能力、思維能力和推理能力。

  3、情感目標:在獨立思考的基礎上,同學之間相互協作,以組為單位相互競賽,養成積極進取的學習習慣。

  三、教學重點

  1、了解正多邊形的特點是指各邊長度相同的多邊形,知道如何畫正多邊形。

  2、能計算出小海龜畫正多邊形時的旋轉角度。

  3、掌握快速的編寫語句的習慣,若需相同或相似的命令行,可直接將光標移動到前面行任意地方,按回車鍵即可。

  4、對于同樣的任務,學會使用重復命令。

  四、教學難點

  1、如何計算小海龜的旋轉角度。

  2、重復命令的書寫規則和正確使用。

  五、教學準備

  計算機課室、大屏幕投影、紅蜘蛛控制軟件、Logo軟件、紙制小海龜等。

  六、教學過程

  (一)復習舊知,導入新課:(5分鐘)

  1、小組競賽畫屏幕所示直線、折線、直線與折線

  2、今天我們的學習任務,就是利用畫直線、折線的簡單命令,來畫一些復雜的幾何圖形。

  (二)認識正多邊形(包括正三角形、正方形、正五邊形、…、正八邊形、…)。

  1、這些圖形的名稱是什么,它們有什么共同特點?請學生發現規律,教師可提示他們發現邊或角有什么特點。(正多邊形,各條邊相等)

  2、今天我們的學習任務就是指揮小海龜畫這些圖形。如何畫出這些圖形?

  (三)學習如何畫正多邊形(15分鐘):

  1、學生說說如何畫正四邊形,如何畫正三角形?可否畫出正五邊形?那利用你們以前的知識,可否畫出正五邊形,正七邊形呢?

  2、學生思考、討論,可利用以前了解的三角形和正方形的內角知識,得出正三角形、正方形的畫法。但如何畫好正五邊形、正六邊形等,則只能靠猜測了,提醒教育學生,養成嚴謹的、科學的學習習慣,得出結論前要有科學依據,不要想當然。

  3、教師介紹新方法,用課件和實物演示小海龜畫正三角形、正四邊形、正五邊形的過程,啟發學生思考小海龜是如何畫圖的,它向哪邊轉動,轉的總角度,轉了多少次,每次轉的角度。

  4、學生討論:小海龜轉的總角度是多少?小海龜要轉動幾次?畫正三角形時,每次轉多少度?畫正四邊形時,每次轉多少度?畫正五邊形呢?正六邊形呢?

  5、學生:畫正多邊形時,旋轉的角度=360/多邊形的邊數。師生共填表格中三角形至六邊形。

  6、獨立思考畫正多邊形的方法,為比賽做準備。

  7、學生分小組比賽畫多邊形,學會選擇表示角度的最佳方法(10分鐘)

  比賽要求:第一小組畫正三角形,第二小組畫正五邊形,第三小組畫正七邊形。畫做得快的可以教同學,但不可以直接幫同學做。(比賽題目故意設置難易不同,畫正七邊形的同學轉動的角度為無限循環小數51.428571,并且要七次輸入同樣命令,為下面的內容做準備。)

  1、同學們如何快速輸入重復命令的第一條秘決:光標移動到上一行任意位置,按回車鍵即可。

  2、轉動角度命令的表示方法:rt 360/多邊形的邊數。

  (四)學習用重復命令畫多邊形(15分鐘)。

  1、告訴學生快速寫語句的第二秘決:使用重復命令。

  2、我們經常會使用到一些相同的命令,當一些命令完全相同時,我們可以將他們集合在一起,然后命令他們重復執行。

  3、課件展示:重復命令畫多邊形的格式是:repeat n [fd 邊長 rt 360/邊數

  (1)比賽繼續進行,使用重復命令畫七邊形、八邊形、九邊形。

  (2)使用重復命令,畫一個邊長為30的正18邊形。(讓學生明白當多邊形邊數越多時,越像圓,為下節課《圓和圓弧》做準備)。

  (五)教學:(5分鐘)

  1、各組在競賽中成績如何?

  2、今天我們學到了什么?

  3、如何計算正多邊形的旋轉角度,完成表格,正七邊形及正多邊形部分。

  4、重復命令的格式如何?什么情況下使用?畫正多邊形的命令如何?

  Repeat 邊數 [fd 邊長 rt 360/邊數]

  附:板書設計

  畫正多邊形

  幾何圖形

  邊數

  旋轉公式

  每次旋轉角度

  正三角形

  3

  360/3

  120

  正四邊形

  4

  360/4

  90

  正五邊形

  5

  360/5

  72

  正六邊形

  6

  360/6

  60

  正七邊形

  7

  360/7

  51.428571……

  正多邊形

  邊數

  360/邊數

  Repeat 邊數 [fd 邊長 rt 360/邊數]

【畫正多邊形教案】相關文章:

《畫楊桃》教案12-17

《吹畫》大班教案12-14

幼兒園《畫》優秀教案12-23

《撕紙添畫》教案教學設計04-20

冬至吃餃子兒童畫教案12-16

小班美術教案及教學反思《畫小草》09-22

中班美術優秀教案及教學反思《畫房子》09-22

大班美術優秀教案及教學反思《沙畫》09-22

簡單版贈汪倫古詩配畫教案01-05

《一幅名揚中外的畫》教案12-19