亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

函數數學教案

時間:2021-10-18 16:59:09 教案 我要投稿

函數數學教案

  作為一位杰出的老師,通常會被要求編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。優秀的教案都具備一些什么特點呢?以下是小編整理的函數數學教案,歡迎大家分享。

函數數學教案

函數數學教案1

  目標:

  (1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

  (2)注重學生參與,聯系實際,豐富學生的感性認識,培養學生的良好的學習習慣

  重點難點:

  能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

  過程:

  一、試一試

  1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格 中,

  AB長x(m)123456789

  BC長(m)12

  面積y(m2)48

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發現,當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數,試寫出這個函數的關系式,

  對于1.,可讓學生根據表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數據的變化情況,提出問題:(1)從所填表格中,你能發現什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。

  對于2,可讓學生分組討論、交流,然后各組派代表發表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。

  對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數關系式.

  二、提出問題

  某商店將每 件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經過市場調查,發現這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?

  在這個問題中,可提出如下問題供學生思考并 回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關系?

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多 少元?

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  5.若設該商品每天的利潤為y元,求y與x的函數關系式。

  將函數關系式y=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x (0<x<10)……………………………(1)

  將函數關系式y=(10-8-x)(100+100x)(0≤x≤2)化為:

  y =-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導學生觀察函數關系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數關系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?

  (分別是二次多項式 )

  (3)函數關系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點 ?

  讓學生討論、交流,發表意見,歸結為:自變量x為何值時,函數y取得最大值。

  2.二次函數定義:形如y=ax2+bx+c (a、b、、c是常數,a≠0)的函數叫做x的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.

  四、課堂練習

  1.(口答)下列函數中,哪些是二次函數?

  (1)y= 5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結

  1.請敘述二次函數的定義.

  2,許多實際問題可以轉化為二次函數來解決,請你聯系生活實 際,編一道二次函數應用題,并寫出函數關系式。

函數數學教案2

  三角函數的誘導公式

  一、指導思想與理論依據

  數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。

  二.教材分析

  三角函數的誘導公式是普通高中課程標準實驗教科書(人教a版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角 與終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.

  三.學情分析

  本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.

  四.教學目標

  (1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;

  (2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;

  (3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;

  (4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.

  五.教學重點和難點

  1.教學重點

  理解并掌握誘導公式.

  2.教學難點

  正確運用誘導公式,求三角函數值,化簡三角函數式.

  六.教法學法以及預期效果分析

  “授人以魚不如授之以魚”, 作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法, 如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

  1.教法

  數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.

  在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”, 由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.

  2.學法

  “現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

  在本節課的教學過程中,本人引導學生的學法為思考問題 共同探討 解決問題 簡單應用 重現探索過程 練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

  3.預期效果

  本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

  七.教學流程設計

  (一)創設情景

  1.復習銳角300,450,600的三角函數值;

  2.復習任意角的三角函數定義;

  3.問題:由 ,你能否知道sin2100的值嗎?引如新課.

  設計意圖

  自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

  (二)新知探究

  1. 讓學生發現300角的終邊與2100角的終邊之間有什么關系;

  2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點為 、 的坐標有什么關系;

  3.sin2100與sin300之間有什么關系.

  設計意圖

  由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角 與 的三角函數值的關系做好鋪墊.

  (三)問題一般化

函數數學教案3

  教材分析

  在函數教學中,我們不僅要在教會函數知識上下功夫,而且還應該追求解決問題的“常規方法”——基本函數知識中所蘊含的思想方法,要從數學思想方法的高度進行函數教學。 在函數的教學中,應突出“類比”的思想和“數形結合”的思想。

  1 .注重“類比教學” 在函數教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續知識的學習產生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由 “ 學會 ” 到 “ 會學 ” ,真正實現 “ 教是為了不教 ” 的目的.

  2. 注重“數學結合”的教學

  數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。

  ( 1 )讓學生經歷繪制函數圖象的具體過程。

  ( 2 )切莫急于呈現畫函數圖象的簡單畫法。

  ( 3 )注意讓學生體會研究具體函數圖象規律的方法。

  知識技能

  目標

  1、理解直線y=kx+b與y=kx之間的位置關系;

  2、會選擇兩個合適的點畫出一次函數的圖象;

  3、掌握一次函數的性質.

  過程與方法目標

  1、通過研究圖象,經歷知識的歸納、探究過程;培養學生觀察、比較、概括、推理的能力;

  2、通過一次函數的圖象總結函數的性質,體驗數形結合法的應用,培養推理及抽象思維能力。

  情感態度目標

  1、通過畫函數圖象并借助圖象研究函數的性質,體驗數與形的內在聯系,感受函數圖象的簡潔美;

  2、在探究一次函數的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

  教學重點

  一次函數的圖象和性質。

  教學難點

  由一次函數的圖像歸納得出一次函數的性質及對性質的理解。

函數數學教案4

  一、教材分析:

  《34.4二次函數的應用》選自義務教育課程標準試驗教科書《數學》(冀教版)九年級上冊第三十四章第四節,這節課是在學生學習了二次函數的概念、圖象及性質的基礎上,讓學生繼續探索二次函數與一元二次方程的關系,教材通過小球飛行這樣的實際情境,創設三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結合問題實際意義就能對二次函數與一元二次方程的關系有很好的體會;從而得出用二次函數的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯系。

  本節教學時間安排1課時

  二、教學目標:

  知識技能:

  1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.

  2.理解拋物線交x軸的點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.

  3.能夠利用二次函數的圖象求一元二次方程的近似根。

  數學思考:

  1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的探索能力和創新精神.

  2.經歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.

  3.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想。

  解決問題:

  1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性。

  2.通過利用二次函數的圖象估計一元二次方程的根,進一步掌握二次函數圖象與x軸的交點坐標和一元二次方程的根的關系,提高估算能力。

  情感態度:

  1.從學生感興趣的問題入手,讓學生親自體會學習數學的價值,從而提高學生學習數學的好奇心和求知欲。

  2.通過學生共同觀察和討論,培養大家的合作交流意識。

  三、教學重點、難點:

  教學重點:

  1.體會方程與函數之間的聯系。

  2.能夠利用二次函數的圖象求一元二次方程的近似根。

  教學難點:

  1.探索方程與函數之間關系的過程。

  2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系。

  四、教學方法:啟發引導 合作交流

  五:教具、學具:課件

  六、教學過程:

  [活動1] 檢查預習 引出課題

  預習作業:

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顧一次函數與一元一次方程的關系,利用函數的圖象求方程3x-4=0的解.

  師生行為:教師展示預習作業的內容,指名回答,師生共同回顧舊知,教師做出適當總結和評價。

  教師重點關注:學生回答問題結論準確性,能否把前后知識聯系起來,2題的格式要規范。

  設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數式的變式,這三個方程把二次方程的根的三種情況體現出來,讓學生回顧二次方程的相關知識;2題是一次函數與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。

  [活動2] 創設情境 探究新知

  問題

  1. 課本P94 問題.

  2. 結合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的高度是20m?

  3. 結合預習題1,完成課本P94 觀察中的題目。

  師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規范;問題2學生獨立思考指名回答,注重數形結合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結歸納出正確結論。

  二次函數y=ax2+bx+c的圖象和x軸交點的坐標與一元二次方程ax2+bx+c=0的根有什么關系?

  教師重點關注:

  1.學生能否把實際問題準確地轉化為數學問題;

  2.學生在思考問題時能否注重數形結合思想的應用;

  3.學生在探究問題的過程中,能否經歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。

  設計意圖:由現實中的實際問題入手給學生創設熟悉的問題情境,促使學生能積極地參與到數學活動中去,體會二次函數與實際問題的關系;學生通過小組合作分析、交流,探求二次函數與一元二次方程的關系,培養學生的合作精神,積累學習經驗。

  [活動3] 例題學習 鞏固提高

  問題

  例 利用函數圖象求方程x2-2x-2=0的實數根(精確到0.1).

  師生行為:教師提出問題,引導學生根據預習題2獨立完成,師生互相訂正。

  教師關注:(1)學生在解題過程中格式是否規范;(2)學生所畫圖象是否準確,估算方法是否得當。

  設計意圖:通過預習題2的鋪墊,同學們已經從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

  [活動4] 練習反饋 鞏固新知

函數數學教案5

  本文題目:高一數學教案:對數函數及其性質

  2.2.2 對數函數及其性質(二)

  內容與解析

  (一) 內容:對數函數及其性質(二)。

  (二) 解析:從近幾年高考試題看,主要考查對數函數的性質,一般綜合在對數函數中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數的運算性質和技巧,并熟練應用.

  一、 目標及其解析:

  (一) 教學目標

  (1) 了解對數函數在生產實際中的簡單應用.進一步理解對數函數的圖象和性質;

  (2) 學習反函數的概念,理解對數函數和指數函數互為反函數,能夠在同一坐標上看出互為反函數的兩個函數的圖象性質..

  (二) 解析

  (1)在對數函數 中,底數 且 ,自變量 ,函數值 .作為對數函數的三個要點,要做到道理明白、記憶牢固、運用準確.

  (2)反函數求法:①確定原函數的值域即新函數的定義域.②把原函數y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數的定義域.

  二、 問題診斷分析

  在本節課的教學中,學生可能遇到的問題是不易理解反函數,熟練掌握其轉化關系是學好對數函數與反函數的基礎。

  三、 教學支持條件分析

  在本節課一次遞推的教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節省老師板書時間,讓學生盡快地進入對問題的分析當中。

  四、 教學過程

  問題一. 對數函數模型思想及應用:

  ① 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

  (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?

  (Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.

  ②討論:抽象出的函數模型? 如何應用函數模型解決問題? 強調數學應用思想

  問題二.反函數:

  ① 引言:當一個函數是一一映射時, 可以把這個函數的因變量作為一個新函數的自變量, 而把這個函數的自變量新的函數的因變量. 我們稱這兩個函數為反函數(inverse function)

  ② 探究:如何由 求出x?

  ③ 分析:函數 由 解出,是把指數函數 中的自變量與因變量對調位置而得出的. 習慣上我們通常用x表示自變量,y表示函數,即寫為 .

  那么我們就說指數函數 與對數函數 互為反函數

  ④ 在同一平面直角坐標系中,畫出指數函數 及其反函數 圖象,發現什么性質?

  ⑤ 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?

  ⑥ 探究:如果 在函數 的圖象上,那么P0關于直線 的對稱點在函數 的圖象上嗎,為什么?

  由上述過程可以得到什么結論?(互為反函數的兩個函數的圖象關于直線 對稱)

  ⑦練習:求下列函數的反函數: ;

  (師生共練 小結步驟:解x ;習慣表示;定義域)

  (二)小結:函數模型應用思想;反函數概念;閱讀P84材料

  五、 目標檢測

  1.(20xx全國卷Ⅱ文)函數y= (x 0)的反函數是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本題考查反函數概念及求法,由原函數x 0可知A、C錯,原函數y 0可知D錯,選B.

  2. (20xx廣東卷理)若函數 是函數 的反函數,其圖像經過點 ,則 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,選B.

  3. 求函數 的反函數

  3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數的反函數為 .

  【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:對數函數及其性質能給您帶來幫助!

函數數學教案6

  〖大綱要求〗

  1. 理解二次函數的概念;

  2. 會把二次函數的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數的圖象;

  3. 會平移二次函數y=ax2(a≠0)的圖象得到二次函數y=a(ax+m)2+k的圖象,了解特殊與一般相互聯系和轉化的思想;

  4. 會用待定系數法求二次函數的解析式;

  5. 利用二次函數的圖象,了解二次函數的增減性,會求二次函數的圖象與x軸的交點坐標和函數的最大值、最小值,了解二次函數與一元二次方程和不等式之間的聯系,數學教案-二次函數。

  內容

  (1)二次函數及其圖象

  如果y=ax2+bx+c(a,b,c是常數,a≠0),那么,y叫做x的二次函數。

  二次函數的圖象是拋物線,可用描點法畫出二次函數的圖象。

  (2)拋物線的頂點、對稱軸和開口方向

  拋物線y=ax2+bx+c(a≠0)的頂點是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點M離墻1米,離地面米,則水流下落點B離墻距離OB是( )

  (A)2米 (B)3米 (C)4米 (D)5米

  三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)

  21.已知:直線y=x+k過點A(4,-3)。(1)求k的值;(2)判斷點B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。

  22.已知拋物線經過A(0,3),B(4,6)兩點,對稱軸為x=,

  (1) 求這條拋物線的解析式;

  (2) 試證明這條拋物線與X軸的兩個交點中,必有一點C,使得對于x軸上任意一點D都有AC+BC≤AD+BD。

  23.已知:金屬棒的長1是溫度t的一次函數,現有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。

  (1) 求這根金屬棒長度l與溫度t的函數關系式;

  (2) 當溫度為100℃時,求這根金屬棒的長度;

  (3) 當這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。

  24.已知x1,x2,是關于x的方程x2-3x+m=0的兩個不同的實數根,設s=x12+x22

  (1) 求S關于m的解析式;并求m的取值范圍;

  (2) 當函數值s=7時,求x13+8x2的值;

  25.已知拋物線y=x2-(a+2)x+9頂點在坐標軸上,求a的值。

  26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

  (1) 四邊形CGEF的面積S關于x的函數表達式和X的取值范圍;

  (2) 當x為何值時,S的數值是x的4倍。

  27、國家對某種產品的稅收標準原定每銷售100元需繳稅8元(即稅率為8%),臺洲經濟開發區某工廠計劃銷售這種產品m噸,每噸2000元。國家為了減輕工人負擔,將稅收調整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴大了生產,實際銷售比原計劃增加2x%。

  (1) 寫出調整后稅款y(元)與x的函數關系式,指出x的取值范圍;

  (2) 要使調整后稅款等于原計劃稅款(銷售m噸,稅率為8%)的78%,求x的值.

  28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點為A,與x軸的交點為B,C(B點在C點左邊)

  (1) 寫出A,B,C三點的坐標;

  (2) 設m=a2-2a+4試問是否存在實數a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;

  (3) 設m=a2-2a+4,當∠BAC最大時,求實數a的值。

  習題2:

  一.填空(20分)

  1.二次函數=2(x - )2 +1圖象的對稱軸是 。

  2.函數y= 的自變量的取值范圍是 。

  3.若一次函數y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。

  4.已知關于的二次函數圖象頂點(1,-1),且圖象過點(0,-3),則這個二次函數解析式為 。

  5.若y與x2成反比例,位于第四象限的一點P(a,b)在這個函數圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數的關系式 。

  6.已知點P(1,a)在反比例函數y= (k≠0)的圖象上,其中a=m2+2m+3(m為實數),則這個函數圖象在第 象限。

  7. x,y滿足等式x= ,把y寫成x的函數 ,其中自變量x的取值范圍是 。

  8.二次函數y=ax2+bx+c+(a 0)的圖象如圖,則點P(2a-3,b+2)

  在坐標系中位于第 象限

  9.二次函數y=(x-1)2+(x-3)2,當x= 時,達到最小值 。

  10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點,已知x1x2=x1+x2+49,要使拋物線經過原點,應將它向右平移 個單位。

  二.選擇題(30分)

  11.拋物線y=x2+6x+8與y軸交點坐標( )

  (A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

  12.拋物線y=- (x+1)2+3的頂點坐標( )

  (A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

  13.如圖,如果函數y=kx+b的圖象在第一、二、三象限,那么函數y=kx2+bx-1的圖象大致是( )

  14.函數y= 的自變量x的取值范圍是( )

  (A)x 2 (B)x<2 x="">- 2且x 1 (D)x 2且x –1

  Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

  ∵5。1<5。9 ∴loga5。1

  師:請同學們觀察一下⑵中這三個對數有何特征?

  生:這三個對數底、真數都不相等。

  師:那么對于這三個對數如何比大小?

  生:找“中間量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。

  板書:略。

  師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

  數 的單調性比大小,②借用“中間量”間接比大小,③利用對數

  函數圖象的位置關系來比大小。

  2 函數的定義域, 值 域及單調性。

  例 2 ⑴求函數y=的定義域。

  ⑵解不等式log0。2(x2+2x-3)>log0。2(3x+3)

  師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要

  使函數有意義。若函數中含有分母,分母不為零;有偶次根式,

  被開方式大于或等于零;若函數中有對數的形式,則真數大于

  零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求

  它們共同作用的結果。)

  生:分母2x-1≠0且偶次根式的被開方式log0。8x-1≥0,且真數x>0。

  板書:

  解:∵ 2x-1≠0 x≠0。5

  log0。8x-1≥0 , x≤0。8

  x>0 x>0

  ∴x(0,0。5)∪(0。5,0。8〕

  師:接下來我們一起來解這個不等式。

  分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

  再根據對數函數的單調性求解。

  師:請你寫一下這道題的解題過程。

  生:<板書>

  解: x2+2x-3>0 x<-3 x="">1

  (3x+3)>0 , x>-1

  x2+2x-3<(3x+3) -2

  不等式的解為:1

  ⒊小結

  這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

  ⒋作業

  ⑴解不等式

  ①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

  ⑵已知函數y=loga(x2-2x),(a>0,a≠1)

  ①求它的單調區間;②當0

  ⑶已知函數y=loga (a>0, b>0, 且 a≠1)

  ①求它的定義域;②討論它的奇偶性;

  ③討論它的單調性。

  ⑷已知函數y=loga(ax-1) (a>0,a≠1),

  ①求它的定義域;

  ②當x為何值時,函數值大于1;

  ③討論它的單調性。

函數數學教案8

  第一教時

  教材:

  角的概念的推廣

  目的:

  要求學生掌握用“旋轉”定義角的概念,并進而理解“正角”“負角”“象限角”“終邊相同的角”的含義。

  過程:

  一、提出課題:“三角函數”

  回憶初中學過的“銳角三角函數”——它是利用直角三角形中兩邊的比值來定義的。相對于現在,我們研究的三角函數是“任意角的三角函數”,它對我們今后的學習和研究都起著十分重要的作用,并且在各門學科技術中都有廣泛應用。

  二、角的概念的推廣

  1.回憶:初中是任何定義角的?(從一個點出發引出的兩條射線構成的幾何圖形)這種概念的優點是形象、直觀、容易理解,但它的弊端在于“狹隘”

  2.講解:“旋轉”形成角(P4)

  突出“旋轉” 注意:“頂點”“始邊”“終邊”

  “始邊”往往合于軸正半軸

  3.“正角”與“負角”——這是由旋轉的方向所決定的。

  記法:角 或 可以簡記成

  4.由于用“旋轉”定義角之后,角的范圍大大地擴大了。

  1° 角有正負之分 如:a=210° b=-150° g=-660°

  2° 角可以任意大

  實例:體操動作:旋轉2周(360°×2=720°) 3周(360°×3=1080°)

  3° 還有零角 一條射線,沒有旋轉

  三、關于“象限角”

  為了研究方便,我們往往在平面直角坐標系中來討論角

  角的頂點合于坐標原點,角的始邊合于 軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限的角(角的終邊落在坐標軸上,則此角不屬于任何一個象限)

  例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

  585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

  四、關于終邊相同的角

  1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

  2.終邊相同的角都可以表示成一個0°到360°的角與 個周角的和

  390°=30°+360°

  -330°=30°-360° 30°=30°+0×360°

  1470°=30°+4×360°

  -1770°=30°-5×360°

  3.所有與a終邊相同的角連同a在內可以構成一個集合

  即:任何一個與角a終邊相同的角,都可以表示成角a與整數個周角的和

  4.例一 (P5 略)

  五、小結: 1° 角的概念的推廣

  用“旋轉”定義角 角的范圍的擴大

  2°“象限角”與“終邊相同的角”

  六、作業: P7 練習1、2、3、4

  習題1.4 1

函數數學教案9

  教學目標:

  知識與技能

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

  2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數學問題。

  過程與方法

  1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

  2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

  情感與價值觀

  1、經歷函數概念的抽象概括過程,體會函數的模型思想。

  2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

  教學重點:

  1、掌握函數概念。

  2、判斷兩個變量之間的關系是否可看作函數。

  3、能把實際問題抽象概括為函數問題。

  教學難點:

  1、理解函數的概念。

  2、能把實際問題抽象概括為函數問題。

  教學過程設計:

  一、創設問題情境,導入新課

  『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

函數數學教案10

  一、教學目標:

  1.掌握用待定系數法求三角函數解析式的方法;

  2.培養學生用已有的知識解決實際問題的能力;

  3.能用計算機處理有關的近似計算問題.

  二、重點難點:

  重點是待定系數法求三角函數解析式;

  難點是選擇合理數學模型解決實際問題.

  三、教學過程:

  【創設情境】

  三角函數能夠模擬許多周期現象,因此在解決實際問題中有著廣泛的應用.

  【自主學習探索研究】

  1.學生自學完成P42例1

  點O為做簡諧運動的物體的平衡位置,取向右的方向為物體位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運動到距平衡位置最遠處時開始計時.

  (1)求物體對平衡位置的位移x(cm)和時間t(s)之間的函數關系;

  (2)求該物體在t=5s時的位置.

  (教師進行適當的評析.并回答下列問題:據物理常識,應選擇怎樣的函數式模擬物體的運動;怎樣求和初相位θ;第二問中的“t=5s時的位置”與函數式有何關系?)

  2.講解p43例2(題目加已改變)

  2.講析P44例3

  海水受日月的引力,在一定的時候發生漲落的現象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情況下,船在漲潮時駛進航道,靠近船塢;卸貨后落潮是返回海洋.下面給出了某港口在某季節每天幾個時刻的水深.

  (1)選用一個三角函數來近似描述這個港口的水深與時間的函數關系,并給出在整點時的近似數值.

  (2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規定至少要有1.5米的安全間隙(船底與海底的距離),該船何時能進入港口?在港口能呆多久?

  (3)若船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時0.3米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

  問題:

  (1)選擇怎樣的數學模型反映該實際問題?

  (2)圖表中的最大值與三角函數的哪個量有關?

  (3)函數的周期為多少?

  (4)“吃水深度”對應函數中的哪個字母?

  3.學生完成課本P45的練習1,3并評析.

  【提煉總結】

  從以上問題可以發現三角函數知識在解決實際問題中有著十分廣泛的應用,而待定系數法是三角函數中確定函數解析式最重要的方法.三角函數知識作為數學工具之一,在以后的學習中將經常有所涉及.學數學是為了用數學,通過學習我們逐步提高自己分析問題解決問題的能力.

  四、布置作業:

  P46習題1.3第14、15題

函數數學教案11

  教學目標:

  知識目標:

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

  2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數學問題。

  能力目標:

  1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

  2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

  情感目標:

  1、經歷函數概念的抽象概括過程,體會函數的模型思想。

  2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的.理解和有效的學習模式。

  教學重點:

  掌握函數概念。

  判斷兩個變量之間的關系是否可看作函數。

  能把實際問題抽象概括為函數問題。

  教學難點:

  理解函數的概念。

  能把實際問題抽象概括為函數問題。

  教學過程設計:

  一、創設問題情境,導入新課

  『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過嗎?

  ……

  『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?

  『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

  『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對于給定的時間t,相應的高度h確定嗎?

  『生』:確定。

  『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

  『生』:研究的對象有兩個,是時間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

  二、新課學習

  做一做

  (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?

  填寫下表:

  層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

  『生』:變量有兩個,是層數與圓圈總數。

  (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

  ①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

  ②給定一個V值,你能求出相應的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

  『生』:相同點是:這三個問題中都研究了兩個變量。

  不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

  『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

  函數的概念

  在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

  一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

  三、隨堂練習

  書P152頁 隨堂練習1、2、3

  四、本課小結

  初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。

  在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。

  函數的三種表達式:

  圖象;(2)表格;(3)關系式。

  五、探究活動

  為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?

  (答案:Y=1.8x-6或)

  六、課后作業

  習題6.1

函數數學教案12

  一、教材的地位和作用

  本 節課主要是在學生學習了函數圖象的基礎上,通過動手操作接受一次函數圖象是直線這一事實,在實踐中體會“兩點法”的簡便,向學生滲透數形結合的數學思想, 以使學生借助直觀的圖形,生動形象的變化來發現兩個一次函數圖象在直角坐標系中的位置關系。培養學生主動學習、主動探索、合作學習的能力。本節課為探索一 次函數性質作準備。

  (一)教學目標的確定

  教學目標是教學的出發點和歸宿。因此,我根據新課標的知識、能力和德育目標的要求,以學生的認知點,心理特點和本課的特點來制定教學目標。

  1、知識目標

  (1)能用“兩點法”畫出一次函數的圖象。

  (2)結合圖象,理解直線y=kx+b(k、b是常數,k≠0)常數k和b的取值對于直線的位置的影響。

  2、能力目標

  (1)通過操作、觀察,培養學生動手和歸納的能力。

  (2)結合具體情境向學生滲透數形結合的數學思想。

  3、情感目標

  (1)通過動手操作,觀察探索一次函數的特征,體驗數學研究和發現的過程,逐步培養學生在教學活動中的主動探索的意識和合作交流的習慣。

  (2)讓學生通過直觀感知、動手操作去經歷、體會規律形成的過程。

  (二)教學重點、難點

  用“兩點法”畫出一次函數的圖象是研究一次函數的性質的基礎,是本節課的重點。直線y=kx+b(k、b是常數,k≠0)常數k和b的取值對于直線的位置的影響,是本節課的難點。關鍵是通過學生的直觀感知、動手操作、合作交流歸納其規律。

  二、學情分析

  1、由用描點法畫函數的圖象的認識,學生能接受一次函數的圖象是直線,結合“兩點確定一條直線”,學生能畫出一次函數圖象。

  2、根據學生抽象歸納能力較差,學習直線y=kx+b(k、b是常數,k≠0)常數k和b的取值對于直線的位置的影響有難度。所以教學中應盡可能多地讓學生動手操作,突出圖象變化特征的探索過程,自主探索出其規律。

  3、抓住初中學生的心理特征,運用直觀生動的形象,引發學生的興趣,吸引他們的注意力;另一方面積極創造條件和機會,讓學生發表見解,發揮學生學習的主動性。

  三、教學方法

  我采用自主探究—→合作交流式教學,讓學生動手操作,主動去探索,小組合作交流。而互動式教學將顧及到全體學生,讓全體學生都參與,達到優生得到培養,后進生也有所收獲的效果。

  四、教學設計

  一、設疑,導入新課(2分鐘)

  師:同學們,上節課我們學習了一次函數,你能說一說什么樣的函數是一次函數嗎?

  生1:函數的解析式都是用自變量的一次整式表示的,我們稱這樣的函數為一次函數。

  生2:一次函數通常可以表示為y=kx+b的形式,其中k、b為常數,k≠0。

  生3:正比例函數也是一次函數。

  師:(同學們回答的都很好)通過前面的學習我們可以發現,一次函數是一種特殊的函數,那么一次函數的圖象是什么形狀呢?

  這節課讓我們一起來研究 “一次函數的圖象”。(板書)

  二、自主探究——小組交流、歸納——問題升華:

  1、師:問(1)你們知道一次函數是什么形狀嗎?(4分鐘)

  生:不知道。

  師:那就讓我們一起做一做,看一看:(出示幻燈片)

  用描點法作出下列一次函數的圖象。

  (1)y= 0.5x (2) y= 0.5x+2

  (3)y= 3x (4) y= 3x + 2

  師:(為了節約時間)要求:用描點法時,最少5個點;以小組為單位,由小組長分配,每人畫一個圖象。畫完后,小組訂正,看是否畫的正確?

  然后討論解決問題(1):觀察你和你的同伴畫出的圖象,你認為一次函數的圖象是什么形狀?

  小組匯報:一次函數的圖象是直線。

  師:所有的一次函數圖象都是直線嗎?

  生:是。

  師:那么一次函數y=kx+b(其中k、b為常數,k≠0),也可以稱為直線y=kx+b(其中k、b為常數,k≠0)。(板書)

  師:(出示幻燈片)問(2):觀察你和你的同伴所畫的圖象在位置上有沒有不同之處?(2分鐘)

  討論正比例函數的圖象與一般的一次函數圖象在位置上有沒有不同之處。

  小組1:正比例函數圖象經過原點。

  小組2:正比例函數圖象經過原點,一般的一次函數不經過原點。

  師出示幻燈片3(使學生再一次加深印象)

  師:問(3):對于畫一次函數y=kx+b(其中k)b為常數,k≠0)的圖象——直線,你認為有沒有更為簡便的方法?

  (一邊思考,可以和同桌交流)(2分鐘)

  生1:用3個點。

  生2:老師我這個更簡單,用兩個點。因為兩點確定一條直線嘛!

  生3:如畫y=0.5x的圖象,經過(0,0)點和(2,1)點這兩個點做直線就行。

  師:我們都認為畫一次函數圖象,只過兩個點畫直線就行。

  (幻燈片4:師,動畫演示用“兩點法”畫一次函數的過程)

  師:做一做,請你用“兩點法”在剛才的直角坐標系中,畫出其余三個一次函數的圖象。(比一比誰畫的既快又好)(4分鐘)

  師:問(4):和你的同伴比一比,看誰取的那兩個點更為簡便一些?

  組1:若是正比例函數,我們組先取(0,0)點,如畫y=0.5x的圖象,我們再了取(2,

  1)點。這樣找的坐標都是整數。

  組2:我們組認為盡量都找整數。

  組3:我們組認為都從兩條坐標軸上找點,這樣比較準確。如y=3x+2,我們取點(0,3)和點(-2/3,0)

  組4:我們組認為,正比例函數經過(0,0)點和(1,k)點;一般的一次函數經過(0,b)點和(-b/k,0)點。

  師:同學們說的都很好。我覺得可以根據情況來取點。

  2、師:我們現在已經用:“兩點法”把四個一次函數圖象準確而又迅速地畫在了一個直角坐標系中,這四個函數圖象之間在位置上有沒有什么關系呢?

  問(1):(由自己所畫的圖象)觀察下列各對一次函數圖象在位置上有什么關系?(獨自觀察——學生回答)(3分鐘)

  ①y=0.5x與y=0.5x+2;②y=3x與y=3x+2;③y=0.5x與y=3x;④y=0.5x+2與y=3x+2。

  生1:①y=0.5x與y=0.5x+2;兩直線平行。

  生2:②y=3x與y=3x+2;兩直線平行。

  生3:③y=0.5x與y=3x;兩直線相交。

  生4:④y=0.5x+2與y=3x+2;兩直線相交。

  師:其他同學有沒有補充?

  生5:③y=0.5x與y=3x都是正比例函數;兩直線相交,并且交點是點(0,0)點。

  生6:老師,我也發現了④y=0.5x+2與y=3x+2的圖象相交,并且交點是點(0,2)。

  師:(出示幻燈片5)同學們回答都不錯,我們要向生5和生6學習,學習他們的細致思考。

函數數學教案13

  案例背景:

  對數函數是函數中又一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.

  案例敘述:

  (一).創設情境

  (師):前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

  反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

  (提問):什么是指數函數?指數函數存在反函數嗎?

  (學生): 是指數函數,它是存在反函數的.

  (師):求反函數的步驟

  (由一個學生口答求反函數的過程):

  由 得 .又 的值域為 ,

  所求反函數為 .

  (師):那么我們今天就是研究指數函數的反函數-----對數函數.

  (二)新課

  1.(板書) 定義:函數 的反函數 叫做對數函數.

  (師):由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?

  (教師提示學生從反函數的三定與三反去認識,學生自主探究,合作交流)

  (學生)對數函數的定義域為 ,對數函數的值域為 ,且底數 就是指數函數中的 ,故有著相同的限制條件 .

  (在此基礎上,我們將一起來研究對數函數的圖像與性質.)

  2.研究對數函數的圖像與性質

  (提問)用什么方法來畫函數圖像?

  (學生1)利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.

  (學生2)用列表描點法也是可以的。

  請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

  (師)由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時,要求學生做到:

  (1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

  學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

  和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

  教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內,如圖:

  然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

  3. 性質

  (1) 定義域:

  (2) 值域:

  由以上兩條可說明圖像位于 軸的右側.

  (3)圖像恒過(1,0)

  (4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

  (5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

  當 時,在 上是減函數,即圖像是下降的.

  之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

  當 時,有 ;當 時,有 .

  學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

  最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

  對圖像和性質有了一定的了解后,一起來看看它們的應用.

  (三).簡單應用

  1. 研究相關函數的性質

  例1. 求下列函數的定義域:

  (1) (2) (3)

  先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.

  2. 利用單調性比較大小

  例2. 比較下列各組數的大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.

 三.拓展練習

  練習:若 ,求 的取值范圍.

四.小結及作業

  案例反思:

  本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

  在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

函數數學教案14

  【教學目標:】

  1.通過對初中銳角三角函數定義的回憶,掌握任意角三角函數的定義法,并掌握用單位圓中的有向線段表示三角函數值.

  2.掌握已知角 終邊上一點坐標,求四個三角函數值.(即給角求值問題)

  【教學重點:】

  任意角的三角函數的定義.

  【教學難點:】

  任意角的三角函數的定義,正弦、余弦、正切這三種三角函數的幾何表示.

  【教學用具:】

  直尺、圓規、投影儀.

  【教學步驟:】

  1.設置情境

  角的范圍已經推廣,那么對任一角 是否也能像銳角一樣定義其四種三角函數呢?本節課就來討論這一問題.

  2.探索研究

  (1)復習回憶銳角三角函數

  我們已經學習過銳角三角函數,知道它們都是以銳角 為自變量,以比值為函數值,定義了角 的正弦、余弦、正切、余切的三角函數,本節課我們研究當角 是一個任意角時,其三角函數的定義及其幾何表示.

  (2)任意角的三角函數定義

  如圖1,設 是任意角, 的終邊上任意一點 的坐標是 ,當角 在第一、二、三、四象限時的情形,它與原點的距離為 ,則 .

  定義:①比值 叫做 的正弦,記作 ,即 .

  ②比值 叫做 的余弦,記作 ,即 .

  圖1

  ③比值 叫做 的正切,記作 ,即 .

  同時提供顯示任意角的三角函數所在象限的課件

  提問:對于確定的角 ,這三個比值的大小和 點在角 的終邊上的位置是否有關呢?

  利用三角形相似的知識,可以得出對于角 ,這三個比值的大小與 點在角 的終邊上的位置無關,只與角 的大小有關.

  請同學們觀察當 時, 的終邊在 軸上,此時終邊上任一點 的橫坐標 都等于0,所以 無意義,除此之外,對于確定的角 ,上面三個比值都是惟一確定的.把上面定義中三個比的前項、后項交換,那么得到另外三個定義.

  ④比值 叫做 的余切,記作 ,則 .

  ⑤比值 叫做 的正割,記作 ,則 .

  ⑥比值 叫做 的余割,記作 ,則 .

  可以看出:當 時, 的終邊在 軸上,這時 的縱坐標 都等于0,所以 與 的值不存在,當 時, 的值不存在,除此之外,對于確定的角 ,比值 , , 分別是一個確定的實數,所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數值的函數,以上六種函數統稱三角函數.

  (3)三角函數是以實數為自變量的函數

  對于確定的角 ,如圖2所示, , , 分別對應的比值各是一個確定的實數,因此,正弦,余弦,正切分別可看成從一個角的集合到一個比值的集合的映射,它們都是以角為自變量,以比值為函數值的函數,當采用弧度制來度量角時,每一個確定的角有惟一確定的弧度數,這是一個實數,所以這幾種三角函數也都可以看成是以實數為自變量,以比值為函數值的函數.

  即:實數角(其弧度數等于這個實數)三角函數值(實數)

  (4)三角函數的一種幾何表示

  利用單位圓有關的有向線段,作出正弦線,余弦線,正切線,如下圖3.

  圖3

  設任意角 的頂點在原點 ,始邊與 軸的非負半軸重合,終邊與單位圓相交于點 ,過 作 軸的垂線,垂足為 ;過點 作單位圓的切線,這條切線必然平行于軸,設它與角 的終邊(當 為第一、四象限時)或其反向延長線(當 為第二、三象限時)相交于 ,當角 的終邊不在坐標軸上時,我們把 , 都看成帶有方向的線段,這種帶方向的線段叫有向線段.由正弦、余弦、正切函數的定義有:

  這幾條與單位圓有關的有向線段 叫做角 的正弦線、余弦線、正切線.當角 的終邊在 軸上時,正弦線、正切線分別變成一個點;當角 的終邊在 軸上時,余弦線變成一個點,正切線不存在.

  (5)例題講評

函數數學教案15

  1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。

  (1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。

  (2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。

  2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。

  3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。

  高一數學對數函數教案:教材分析

  (1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。

  (2) 本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。

  (3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。

  高一數學對數函數教案:教法建議

  (1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。

  (2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

【函數數學教案】相關文章:

奇函數的反函數是奇函數嗎10-12

奇函數乘奇函數等于什么10-12

函數與反函數關于什么對稱10-12

常數函數是周期函數嗎?10-12

復合函數怎么分解10-12

一次函數和正比例函數的概念   10-12

《集合與函數》課件設計05-08

《對數函數》課件設計05-08

對數函數說課稿11-09

余弦函數的性質說課稿11-06