亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高一數學上冊教案

時間:2021-07-27 11:15:23 教案 我要投稿

人教版高一數學上冊教案

  作為一位優秀的人民教師,總歸要編寫教案,教案是教材及大綱與課堂教學的紐帶和橋梁。那么教案應該怎么寫才合適呢?以下是小編為大家整理的人教版高一數學上冊教案,希望能夠幫助到大家。

人教版高一數學上冊教案

人教版高一數學上冊教案1

  教學目標:

  (1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。

  (2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。

  (3)情感態度與價值觀:感受集合語言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發展用嚴密謹慎的集合語言描述問題的習慣。

  教學重難點:

  (1)重點:了解集合的含義與表示、集合中元素的特性。

  (2)難點:區別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。

  教學過程:

  【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?

  [設計意圖]引出“集合”一詞。

  【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。

  [設計意圖]探討并形成集合的含義。

  【問題3】請同學們舉出認為是集合的例子。

  [設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。

  【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?

  [設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。

  【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x—1)(x+2)=0的所有實數根”組成的集

  [設計意圖]引出并介紹列舉法。

  【問題6】例1的講解。同學們能用列舉法表示不等式x—7<3的解集嗎?

  【問題7】例2的講解。請同學們思考課本第6頁的思考題。

  [設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。

  【問題8】請同學們總結這節課我們主要學習了那些內容?有什么學習體會?

  [設計意圖]學習小結。對本節課所學知識進行回顧。

  布置作業。

人教版高一數學上冊教案2

  一、教材分析

  1、教學內容

  本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。

  2、教材的地位和作用

  函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。

  3、教材的重點﹑難點﹑關鍵

  教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念。

  教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。

  教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程。

  4、學情分析

  高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強。

  二、目標分析

  (一)知識目標:

  1、知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。

  2、能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。

  3、情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。

  (二)過程與方法

  培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。

  三、教法與學法

  1、教學方法

  在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。

  2、學習方法

  自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。

  四、過程分析

  本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。

  (一)問題情景:

  為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)

  新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。

  (二)函數單調性的定義引入

  1、幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:

  問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?

  問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?

  通過學生的交流、探討、總結,得到單調性的“通俗定義”:

  從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?

  通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。

  設計意圖:通過學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。通過學生已學過的一次y=2x+4,的圖象的動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。

  (三)增函數、減函數的定義

  在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。

  定義中的“當x1x2時,都有f(x1)

  注意:

  (1)函數的`單調性也叫函數的增減性;

  (2)注意區間上所取兩點x1,x2的任意性;

  (3)函數的單調性是對某個區間而言的,它是一個局部概念。

  讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。

  設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。

  (四)例題分析

  在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。

  2、例2、證明函數在區間(—∞,+∞)上是減函數。

  在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。

  變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么?

  變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。

  變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。

  錯誤:實質上并沒有證明,而是使用了所要證明的結論

  例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。

  (五)鞏固與探究

  1、教材p36練習2,3

  2、探究:二次函數的單調性有什么規律?

  (幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。

  設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。

  通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。

  (六)回顧總結

  通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。

  設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。

  (七)課外作業

  1、教材p43習題1。3A組1(單調區間),2(證明單調性);

  2、判斷并證明函數在上的單調性。

  3、數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。

  設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。

  (七)板書設計(見ppt)

  五、評價分析

  有效的概念教學是建立在學生已有知識結構基礎上,因此在教學設計過程中注意了:第一。教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發展區”;第三。強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。

  本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。

人教版高一數學上冊教案3

  1、教材(教學內容)

  本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用。

  2、設計理念

  本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標。

  3、教學目標

  知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題。

  過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用。

  情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美。

  4、重點難點

  重點:任意角三角函數的定義。

  難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透。

  5、學情分析

  學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念。在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構。

  6、教法分析

  “問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構。這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用。

  7、學法分析

  本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。

  8、教學設計(過程)

  一、引入

  問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?

  問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?

  問題3:當角clipXimage002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?

  二、原有認知結構的改造和重構

  問題4:當角clipXimage002[1]是銳角時,clipXimage004,線段OP的長度clipXimage006這幾個量之間有何關系?

  學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數

  學生閱讀教材,并思考:

  問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?

  學生討論并回答

  三、新概念的形成

  問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?

  學生回答,并閱讀教材,得到任意角三角函數的定義。并思考:

  問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?

  展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的

  并類比函數的研究方法,得出任意角三角函數的定義域和值域。

  四、概念的運用

  1、基礎練習

  ①口算clipXimage008的值。

  ②分別求clipXimage010的值

  小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值

  ③若clipXimage012,試寫出角clipXimage002[2]的值。

  ④若clipXimage015,不求值,試判斷clipXimage017的符號

  ⑤若clipXimage019,則clipXimage021為第象限的角。

  例1、已知角clipXimage002[3]的終邊過點clipXimage024,求clipXimage026之值

  若P點的坐標變為clipXimage028,求clipXimage030的值

  小結:任意角三角函數的等價定義(終邊定義法)

  例2、一物體A從點clipXimage032出發,在單位圓上沿逆時針方向作勻速圓周運動,若經過的弧長為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變為clipXimage006[1],如何用clipXimage034[2]來表示物體A所在位置的坐標?

  小結:可以采用三角函數模型來刻畫圓周運動

  五、拓展探究

  問題8:當角clipXimage002[4]的終邊繞頂點O作圓周運動時,角clipXimage002[5]的終邊與單位圓的交點clipXimage039的坐標clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數模型嗎?

  思考:引入平面直角坐標系后,我們可以把圓周運動用數來刻畫,這是將“形”轉化成為“數”;角clipXimage002[7]正弦值是一個數,你能借助平面直角坐標系和單位圓,用“形”來表示這個“數”嗎?角clipXimage002[8]余弦值、正切值呢?

  六、課堂小結

  問題9:請你談談本節課的收獲有哪些?

  七、課后作業

  教材P21第6、7、8題

【人教版高一數學上冊教案】相關文章:

人教版小學數學教案01-14

人教版小學數學教案01-14

人教版小學數學四年級上冊教案01-18

人教版四年級上冊數學教案01-14

人教版四年級數學上冊教案01-14

人教版小學數學二年級上冊教案01-20

人教版四年級數學上冊教案01-15

人教版小學六年級數學上冊教案11-26

最新人教版一年級數學上冊教案01-22

人教版四年級上冊數學教案9篇01-17