亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

第一冊有理數(shù)的加法說課教案

時(shí)間:2021-07-04 11:48:26 教案 我要投稿

第一冊有理數(shù)的加法說課教案范文

  今天我說課的題目是“有理數(shù)的加法(一)"。本節(jié)課選自華東師范大學(xué)出版社出版的〈義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書〉七年級(上),。這一節(jié)課是本冊書第二章第六節(jié)第一課時(shí)的內(nèi)容。下面我就從以下四個(gè)方面一一教材分析、教材處理、教學(xué)方法和教學(xué)手段、教學(xué)過程的設(shè)計(jì)向大家介紹一下我對本節(jié)課的理解與設(shè)計(jì)。

第一冊有理數(shù)的加法說課教案范文

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。

  1、 有理數(shù)的加法在整個(gè)知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。

  2、 就第二章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。

  從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。(結(jié)合微機(jī)顯示)

  教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。

  二、教材處理

  本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負(fù)數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時(shí)間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動(dòng)形象的`事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程當(dāng)中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動(dòng)態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程的設(shè)計(jì)簾具體體現(xiàn)。而且在做練習(xí)的過程當(dāng)中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進(jìn)行。

  三、教學(xué)方法和數(shù)學(xué)孚段

  在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動(dòng)情況,使其在教學(xué)過程中在掌握知識同時(shí)、發(fā)展智力、受到教育。

  四、教學(xué)過程的設(shè)計(jì)

  1, 引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問題,讓學(xué)生在充當(dāng)指揮官的同時(shí),有一種解決問題的成就感,從而使學(xué)生積極主動(dòng)的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍。

  2, 探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個(gè)小人在坐標(biāo)軸上來回的移動(dòng),使學(xué)生在小人的移動(dòng)過程當(dāng)中體會兩個(gè)數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則。

  3, 鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過程當(dāng)中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。

  4, 歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對本節(jié)的課進(jìn)行說明。

  以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。

  要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。

  2、 就第一章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。

  從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。

  教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。

  以上是我對本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。

【第一冊有理數(shù)的加法說課教案】相關(guān)文章:

有理數(shù)加法說課教案07-12

關(guān)于有理數(shù)的加法說課教案08-26

有理數(shù)的加法教案03-02

有理數(shù)的加法教案08-28

有理數(shù)的加法教案11-26

《有理數(shù)的加法》教案09-19

有理數(shù)的加法第一課時(shí)說課11-12

有理數(shù)的加法與減法教案07-22

有理數(shù)的加法教案范文01-11