《用代入法解二元一次方程組》優(yōu)秀教案
教學目標:
1、會用代入法解二元一次方程組
2、會闡述用代入法解二元一次方程組的基本思路——通過“代入”達到“消元”的目的,從而把解二元一次方程組轉化為解一元一次方程。
此外,在用代入法解二元一次方程組的知識發(fā)生過程中,讓學生從中體會“化未知為已知”的重要的數(shù)學思想方法。
引導性材料:
本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度。”設甲的速度為X千米/小時,由題意可得一元一次方程2(X+2X)=60;設甲的速度為X千米/小時,乙的速度為Y千米/小時,由題意可得二元一次方程組 2(X+Y)=60
Y=2X 觀察
2(X+2X)=60與 2(X+Y)=60 ①
Y=2X ② 有沒有內在聯(lián)系?有什么內在聯(lián)系?
(通過較短時間的觀察,學生通常都能說出上面的二元一次方程組與一元一次方程的內在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)
知識產(chǎn)生和發(fā)展過程的教學設計
問題1:從上面的二元一次方程組與一元一次方程的內在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個新問題(解二元一次方程組)轉化為熟悉的問題(解一元一次方程)。
解方程組 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
問題2:你認為解方程組 2(X+Y)=60 ①
Y=2X ② 的關鍵是什么?那么解方程組
X=2Y+1
2X—3Y=4 的關鍵是什么?求出這個方程組的解。
上面兩個二元一次方程組求解的基本思路是:通過“代入”,達到消去一個未知數(shù)(即消元)的目的`,從而把解二元一次方程組轉化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡稱“代入法”。
問題3:對于方程組 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述兩個二元一次方程組一樣,把方程組中的一個方程直接代入另一個方程從而消去一個未知數(shù)呢?
(說明:從學生熟悉的列一元一次方程求解兩個未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學生建立新舊知識的聯(lián)系和培養(yǎng)良好的學習習慣,使學生逐步學會把一個還不會解決的問題轉化為一個已經(jīng)會解決的問題的思想方法,對后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學生就有了求解的策略。)
例題解析
例:用代入法將下列解二元一次方程組轉化為解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
將①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
將②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,將Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,將T=2S-3代入②消去T得:
3S+2(2S-3)=8
課內練習:
解下列方程組。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小結:
1、用代入法解二元一次方程組的關鍵是“消元”,把新問題(解二元一次方程組)轉化為舊知識(解一元一次方程)來解決。
2、用代入法解二元一次方程組,常常選用系數(shù)較簡單的方程變形,這用利于正確、簡捷的消元。
3、用代入法解二元一次方程組,實質是數(shù)學中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個未知數(shù)Y。
課后作業(yè):
教科書第14頁練習題2(1)、(2)題,第15頁習題5.2A組2(1)、(2)、(4)題。
【《用代入法解二元一次方程組》優(yōu)秀教案】相關文章:
代入法解二元一次方程組的典型教案09-10
代入法解二元一次方程組教案范本09-07
《代入法解二元一次方程組》教學反思11-15
《二元一次方程組的解法—代入法》說課稿11-09
《二元一次方程組的解法代入消元法》的優(yōu)秀說課稿范文10-14
《用加減消元法解二元一次方程組》教學反思02-12
初一二元一次方程組和它的解教案09-07
解二元一次方程組教學反思11-30