平行線的性質優秀教案設計范文
教學目標
1.使學生理解平行線的性質和判定的區別.
2.使學生掌握平行線的三個性質,并能運用它們作簡單的推理.
重點難點
重點:平行線的三個性質.
難點:平行線的三個性質和怎樣區分性質和判定.
關鍵:能結合圖形用符號語言表示平行線的三條性質.
教學過程
一、復習
1.如何用同位角、內錯角、同旁內角來判定兩條直線是否平行?
2.把它們已知和結論顛倒一下,可得到怎樣的語句?它們正確嗎?
二、新授
1.實驗觀察,發現平行線第一個性質
請學生畫出下圖進行實驗觀察.
設l1∥l2,l3與它們相交,請度量1和2的大小,你能發現什么關系?
請同學們再作出直線l4,再度量一下3和4的大小,你還能發現它們有什么關系?
平行線性質1(公理):兩直線平行,同位角相等.
2.演繹推理,發現平行線的其它性質
(1)已知:如圖,直線AB,CD被直線EF所截,AB∥CD.
求證:1= 2.
(2)已知:如圖2-64,直線AB,CD被直線EF所截,AB∥CD.
求證:2=180.
在此基礎上指出:平行線的性質2 (定理)和平行線的性質3 (定理).
3.平行線判定與性質的區別與聯系
投影:將判定與性質各三條全部打出.
(1)性質:根據兩條直線平行,去證角的相等或互補.
(2)判定:根據兩角相等或互補,去證兩條直線平行.
聯系是:它們的條件和結論是互逆的,性質與判定要證明的問題是不同的.
三、例題
例2如圖所示,AB∥CD,AC∥BD.找出圖中相等的角與互補的角.
此題一定要強調,哪兩條直線被哪一條直線所截.
答:相等的角為:2,4,6,8.互補的角為:BAC+ACD=180,ABD+CDB=180,CAB+DBA=180,ACD+BDC=180.
相等的角還有:ACD=ABD,BAC=BDC.(同角的補角相等)
例3如圖所示.已知:AD∥BC,AEF=B,求證:AD∥EF.
分析:(執果索因)從圖直觀分析,欲證AD∥EF,只需AEF=180,
(由因求果)因為AD∥BC,所以B=180,又AEF,所以AEF=180成立.于是得證.
證明:因為 AD∥BC,(已知)
所以 B=180.(兩直線平行,同旁內角互補)
因為 AEF=B,(已知)
所以 AEF=180,(等量代換)
所以 AD∥EF.(同旁內角互補,兩條直線平行)
四、練習:
1.如圖所示,已知:AE平分BAC,CE平分ACD,且AB∥CD.
求證:2=90.
證明:因為 AB∥CD,
所以 BAC+ACD=180,
又因為 AE平分BAC,CE平分ACD,
所以 , ,
故 .
即 2=90.
(理由略)
2.如圖所示,已知:2,
求證:4=180.
分析:(讓學生自己分析)
證明:(學生板書)
小結
我們是如何得到平行線的性質定理?通過度量,運用從特殊到一般的思維方式發現性質1(公理),然后由公理通過演繹證明得到后面兩個性質定理.從因果關系和所起的作用來看性質定理和判定定理的區別與聯系.
作業:
1.如圖,AB∥CD,1=102,求2、3、4、5的度數,并說明根據?
2.如圖,EF過△ABC的一個頂點A,且EF∥BC,如果B=40,2=75,那么1、3、C、BAC+C各是多少度,為什么?
3.如圖,已知AD∥BC,可以得到哪些角的和為180?已知AB∥CD,可以得到哪些角相等?并簡述理由.
5.3平行線性質(二)
[教學目標]
經歷觀察、操作、推理、交流等活動,進一步發展空間觀念,推理能力和有條件表達能力
理解兩條平行線的距離的含義,了解命題的含義,會區分命題的題設和結論
能夠綜合運用平行線性質和判定解題
[教學重點與難點]
重點:平行線性質和判定綜合應用,兩條平行線的距離,命題等概念
難點:平行線性質和判定靈活運用
[教學設計]
一.復習引入
1.平行線的判定方法有哪些?
2.平行線的性質有哪些?
3.完成下面填空
已知:BE是AB的延長線,AD//BC,AB//CD,若 則
4. 那么a,c的位置關系如何?
二.新課
1.例1,已知a//c, 直線b與c垂直嗎?為什么?
例2如圖是一塊梯形鐵片的殘余部分,量得 ,梯形另外兩個角分別是多少度?
2.實踐 與探究
(1)學生操作:用三角尺和直尺畫平行線,做成一張
個格子的方格紙。觀察并思考:做出的方格紙的.一部分,
線段 都與兩條平行線 垂直
嗎?它們的長度相等嗎?
教師給出兩條平行線的距離定義:同時垂直于兩條平行線,
并且夾在這兩條平行線間的線段長度叫做兩條平行線的距離。
問題:AB//CD,在CD上任取一點E,作 垂足F,問EF是否垂直DC?垂線段EF是平行線AB、CD的距離嗎?
結論:兩條平行線的距離處處相等,而不隨垂線段的位置而改變
3.命題和它的構成
下列語句,分析語句的特點
(1)如果兩條直線都與第三條直線平行,那么這兩條直線也平行。
(2)對頂角相等
(3)等式兩邊同加上同一個數,結果仍是等式
(4)如果兩條直線不平行,那么同位角不相等
這些句子都是對某一件事情作出是或不是的判斷
命題:判斷一件事情的句子,叫做命題
(1)命題的組成:命題由題設和結論兩部分組成,題設是已知項,結論是由已知項推出的事項 (2)形式:通常寫成如果,那么的形式,
三.鞏固練習
1.等式兩邊乘以同一個數,結果仍是等式是命題嗎?如果是,它的題設和結論分別是什么?
2舉出一些命題的例子
四.作業
【平行線的性質優秀教案設計】相關文章:
平行線的性質教案設計09-07
《平行線的性質》優秀教學反思09-13
平行線的性質09-09
平行線的性質優秀教學反思07-06
平行線的性質說課稿09-15
平行線性質的說課稿11-25
平行線的性質說課稿02-12
《平行線的性質》說課稿05-30
平行線的性質教案09-07