亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

小學五年級上數(shù)學《點陣中的規(guī)律》教案

時間:2021-06-15 17:55:10 教案 我要投稿

小學五年級上數(shù)學北師大版《點陣中的規(guī)律》教案

  教學內(nèi)容:

小學五年級上數(shù)學北師大版《點陣中的規(guī)律》教案

  北師大版小學數(shù)學五年級上冊第82——83頁的內(nèi)容。

  教學目標:

  1、結合具體的圖形,明確什么是“點陣”,了解點陣的基本知識。

  2、能在具體的觀察活動中,發(fā)現(xiàn)點陣中隱藏的規(guī)律,體會圖形與數(shù)的聯(lián)系。

  3、培養(yǎng)學生觀察、概括與推理的能力。

  4、了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。

  教學重點:

  通過觀察活動,引導學生探索發(fā)現(xiàn)“點陣”中隱藏的規(guī)律。

  教學難點:

  能從不同的角度觀察到點陣圖形的不同排列規(guī)律,并能把觀察到的規(guī)律用算式表示出來。

  教學準備:

 。◣煟┒嗝襟w課件;(生)彩筆。

  教學過程:

  一、談話引入

 。ɡ蠋熢诤诎迳袭孅c)今天給大家請來了一位圖形朋友——點,不要小看了這個小小的點,早在2000多年前,古希臘的數(shù)學家們就是從這樣一個小小的點開始研究,發(fā)現(xiàn)了由許多個這樣的點組成的點子圖形中的規(guī)律,還給這些圖形取了一個好聽的名字,叫點陣。同學們想不想過一把當數(shù)學家的癮,自己來尋找這些規(guī)律?今天,我們就一起來探究點陣中隱含的規(guī)律。(板書課題:點陣中的規(guī)律)

  二、探究正方形點陣中的規(guī)律

  1、探究正方形點陣的規(guī)律。

 。1)我們一起來看看數(shù)學家們當年研究的點陣圖,邊看邊說出各個點陣的點子數(shù)。

  教師依次出示前四個正方形點陣圖,并逐步引導學生想像、猜測:下一個點陣圖會是什么樣子呢?

 。S著點陣圖的依次出現(xiàn),學生的思維逐漸活躍,當?shù)谌齻點陣圖出現(xiàn)的時候,學生已經(jīng)忍不住地說出了點數(shù)。說明學生已經(jīng)發(fā)現(xiàn)了正方形點陣中的規(guī)律。但這時,教師沒有急于讓學生發(fā)表自己的看法,而是給學生留出了完善自己想法的時間,同時也暗示學生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應該有耐心地繼續(xù)自己的觀察活動。)

 。2)除了能說出各個點陣的點數(shù)之外,仔細觀察點陣圖:你還有什么其它的發(fā)現(xiàn)?

  (學生能夠發(fā)現(xiàn)各個點陣的形狀是正方形的,還能用1×1、2×2、3×3、4×4這樣的算式來表示每個點陣的點數(shù)。)

 。3)根據(jù)剛才發(fā)現(xiàn)的規(guī)律,想:第五個點陣是什么樣子,獨立畫出來,并用算式表示點數(shù)。

 。▽W生獨立畫出第五個5×5的點陣圖)

  (4)思考:照這樣的規(guī)律繼續(xù)畫下去,第100個點陣的點數(shù)如何用算式來表示?第n個呢?

 。ńY合發(fā)現(xiàn)的.規(guī)律,引導學生逐步完善自己的想法,建立總結正方形點陣規(guī)律的模型。)

  小組討論:你覺得每個正方形點陣的點子總數(shù)與什么有關系?

  (學會用簡單的語言表述自己的想法,使得初步的形象感知得到提升)

  小結:每個正方形點陣的點子總數(shù)可以看作是一個相同數(shù)字相乘的積,這個數(shù)字與點陣的序號有關,與每個正方形點陣每排的點子數(shù)也有關系。

  2、剛才我們研究了一組正方形點陣中隱含的規(guī)律,那么對于同一個點陣來說,如果劃分的方法不同,所呈現(xiàn)的規(guī)律也就不同。

 。1)請大家仔細觀察第五個正方形點陣中點的劃分方法,你能發(fā)現(xiàn)什么規(guī)律?

  學生會有如下發(fā)現(xiàn)

 、偈怯谜劬劃分開的。

  ②每條線內(nèi)的點分別是1、3、5、7、9。

 、圻@個正方形點陣的點數(shù)就可以表示為:1+3+5+7+9=25。

 。2)如果把每條線所包圍的點子數(shù)記下來,如何用算式來表示?

  第一條線: 1 = 1;

  第二條線: 1+3 = 4;

  第三條線: 1+3+5 = 9;

  第四條線: 1+3+5+7 = 16;

  第五條線: 1+3+5+7+9 = 25;

 。3)每條線所包圍的點子數(shù)與前面研究的一組正方形點陣的點子數(shù)有什么關系?(正好是第一到第五個點陣的點子數(shù)。)

 。ǖ诙、三個問題需要老師引導,學生自己難以發(fā)現(xiàn),尤其是第三個問題,學生很難想到它們和開始時依次出現(xiàn)的幾個正方形點陣的點數(shù)之間的關系。當學生想不到這種聯(lián)系時,是否一定要引導?)

 。4)思考:表示這個正方形點陣的點數(shù)的算式有什么特點?

  (這個點陣的點子總數(shù)可以看作是連續(xù)奇數(shù)的和。)

 。5)如果按這樣的劃分方法劃分第六個正方形點陣,它的點數(shù)該如何表示?

  1+3+5+7+9+11 = 36;

  (6)前面老師是把這個5×5的正方形點陣用折線進行了劃分,你們還有哪些不同的劃分的方法?在用算式表示上有什么規(guī)律?

  學生的劃分有以下幾種

 、贆M向劃分:用算式表示為5+5+5+5+5;

  ②豎向劃分:用算式表示為5+5+5+5+5;

  ③斜向劃分:用算式表示為1+2+3+4+5+4+3+2+1;

  至于前面兩種方法,都可以簡單地表示為:5×5;重點引導學生討論第三種劃分方法,觀察這個算式,你們發(fā)現(xiàn)了什么?

  學生的發(fā)現(xiàn)如下

  算式里最大的數(shù)是5;

  從1開始加到5再加回到1;

  這個算式是兩邊對稱的;

  這個點陣的點數(shù)是中間那個數(shù)字5乘5的積;

  教師引導:照這樣的規(guī)律類推,第六個正方形點陣的點數(shù)如何表示?第9個呢?第n個呢?

 。ㄔ谶@里把尋找不同劃分方法的任務交給學生,既是學生前面探究過程思維的延續(xù),又體現(xiàn)了學生學習的自主性,還用另一種方式解讀了“練一練”中的第一題。培養(yǎng)了學生從不同的角度去發(fā)現(xiàn)問題,總結概括規(guī)律的能力。)

  三、延伸應用,形成策略

  1、除了我們剛才研究的正方形點陣,請大家猜猜看,還會有什么形狀的點陣呢?

 。▽W生列舉了長方形點陣、三角形點陣、圓形點陣、橢圓形點陣等等。)

  2、請大家嘗試運用前面學會的方法探究長方形點陣規(guī)律。

 。1)小組合作研究:如何用算式表示每個長方形點陣的點子數(shù)?

  學生通過討論很快達成共識

  1×2;2×3;3×4;4×5;

  (2)請你獨立畫出第五個長方形點陣并用算式表示出點數(shù)。

 。▽W生獨立畫圖并寫出算式,互相交流。)

  算式表示為:5×6;

  (3)思考討論:你們覺得自己所寫的算式中的數(shù)字與圖形中的點子之間有什么關系?

 。▽W生的發(fā)現(xiàn)為:乘法算式中的第二個因數(shù)總是比第一個因數(shù)多 1,第一個因數(shù)是長方形點陣的豎排點數(shù),第二個因數(shù)是長方形點陣的橫排點數(shù)。并沒有發(fā)現(xiàn)第一個因數(shù)與點陣序號間的關系,因此,當要求他們寫出18個點陣的點數(shù)時,出現(xiàn)了兩種不同的答案:17×18、18×19。在爭論各自的理由時,學生的注意力才聯(lián)系到了點陣的序號與算式的關系,從而確定了正確答案。)

  (4)照這樣繼續(xù)寫,你能寫出第n個長方形點陣的點數(shù)嗎?

  學生可以很順利地寫出:n×(n+1)。

  3、看來對于任何一個點陣,只要我們認真觀察研究,總能發(fā)現(xiàn)其獨特的規(guī)律。在小組內(nèi)研究三角形點陣中的規(guī)律,要求

 。1)個人思考活動:觀察給出的四個三角形點陣的規(guī)律,畫出第五個三角形點陣。

 。2)小組討論:對自己畫出的第五個三角形點陣進行劃分,你能想到哪些不同的劃分方法?分別用算式表示點數(shù)。

  (學生活動)

  全班交流

  劃分一:橫向劃分,1+2+3+4+5=15;

  劃分二:豎向劃分,1+2+3+4+5=15;

  劃分三:斜向劃分,1+2+3+4+5=15;

  劃分四:折線劃分,1+5+9=15;

  (對于前面的三種劃分方法,都在我的預設之內(nèi),學生到此,已經(jīng)很輕松地用語言表述出自己的想法:這樣的三角形點陣的點數(shù)是從1開始的連續(xù)自然數(shù)的和。而對于第四種劃分方法,是我沒有想到的。有一個孩子卻用非常強烈地要求,表達了自己的這種劃分方法,并且說出了這個算式依次遞加4的規(guī)律。)

  4、同學們真了起!真正具有未來數(shù)學家的風范,用自己的聰明才智,發(fā)現(xiàn)并總結了各個不同的點陣圖中隱藏的規(guī)律。那么你覺得應該從哪些方面來探究點陣的規(guī)律?

  學生交流

  仔細觀察點陣的形狀;

  數(shù)清每一行的點子數(shù);

  看清前后兩個點陣的變化……

  (在這里不需要學生說出多么專業(yè)的、深奧的數(shù)學原理,只是引導學生對自己探究性學習方法的一個總結,盡管語言可能不夠簡練,總結不夠到位,只要學生用自己的語言在表述,就是對學生思維訓練的一個提升,一種飛越。)

  四、課堂總結

  1、點陣的知識在生活中有著廣泛的應用,比如北京奧運會開幕式上的“擊缶表演”、“太極表演”等,都是把一個人看作了一點,來排列有規(guī)律的隊形。你還知道什么地方運用了點陣的相關知識?

  五子棋、閱兵式的方隊、節(jié)日的花壇……

  2、課后繼續(xù)搜集點陣的相關資料,下節(jié)課繼續(xù)交流。

  (在這里,把學生的課堂學習延伸到生活,鏈接到學生已有的相關生活經(jīng)驗,然后讓學生在生活中繼續(xù)尋找哪里用到點陣的知識,體現(xiàn)了數(shù)學與生活的密切聯(lián)系,數(shù)學來源于生活,又應用于生活。)

【小學五年級上數(shù)學《點陣中的規(guī)律》教案】相關文章:

點陣中的規(guī)律優(yōu)秀教案10-23

小學五年級數(shù)學《點陣中的規(guī)律》教案08-30

《點陣中的規(guī)律》說課稿02-14

點陣中的規(guī)律說課稿06-28

小學五年級數(shù)學《點陣中的規(guī)律》優(yōu)秀教案范文08-30

小學五年級數(shù)學《點陣中的規(guī)律》教案三篇08-27

點陣中的規(guī)律說課稿范文01-23

《點陣中的規(guī)律》優(yōu)秀說課稿01-16

《點陣中的規(guī)律》說課稿范文04-09