勾股定理的逆定理數學教案范文
教學目標:
一知識技能
1.理解勾股定理的逆定理的證明方法和證明過程;
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;
二數學思考
1.通過勾股定理的逆定理的探索,經歷知識的發生發展與形成的過程;
2.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合法的應用.
三解決問題
通過勾股定理的逆定理的證明及其應用,體會數形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.
四情感態度
1.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統一關系;
2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.
教學重難點:
一重點:勾股定理的逆定理及其應用.
二難點:勾股定理的逆定理的證明.
教學方法
啟發引導分組討論合作交流等。
教學媒體
多媒體課件演示。
教學過程:
一復習孕新,引入課題
問題:
(1) 勾股定理的內容是什么?
(2) 求以線段ab為直角邊的直角三角形的斜邊c的長:
① a=3,b=4
② a=2.5,b=6
③ a=4,b=7.5
(3) 分別以上述abc為邊的三角形的形狀會是什么樣的`呢?
二動手實踐,檢驗推測
1.把準備好的一根打了13個等距離結的繩子,按3個結4個結5個結的長度為邊擺放成一個三角形,請觀察并說出此三角形的形狀?
學生分組活動,動手操作,并在組內進行交流討論的基礎上,作出實踐性預測.
教師深入小組參與活動,并幫助指導部分學生完成任務,得出勾股定理的逆命題.在此基礎上,介紹:古埃及和我國古代大禹治水都是用這種方法來確定直角的.
2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個三角形,請觀察并說出此三角形的形狀?
3.結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?
三探索歸納,證明猜想
問題
1.三邊長度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?
2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長的三角形是直角三角形嗎?
3.如圖18.2-2,若△ABC的三邊長
滿足
,試證明△ABC是直角三角形,請簡要地寫出證明過程.
教師提出問題,并適時誘導,指導學生完成問題3的證明.之后,歸納得出勾股定理的逆定理.
四嘗試運用,熟悉定理
問題
1例1:判斷由線段
組成的三角形是不是直角三角形:
(1)
(2)
2三角形的兩邊長分別為3和4,要使這個三角形是直角三角形,則第三條邊長是多少?
教師巡視,了解學生對知識的掌握情況.
特別關注學生在練習中反映出的問題,有針對性地講解,學生能否熟練地應用勾股定理的逆定理去分析和解決問題
五類比模仿,鞏固新知
1.練習:練習題13.
2.思考:習題18.2第5題.
部分學生演板,剩余學生在課堂練習本上獨立完成.
小結梳理,內化新知
六1.小結:教師引導學生回憶本節課所學的知識.
2.作業:
(1)必做題:習題18.2第1題(2)(4)和第3題;
(2)選做題:習題18.2第46題.
【勾股定理的逆定理數學教案】相關文章:
勾股定理的逆定理數學教案范文08-25
勾股定理的逆定理說課稿12-04
《勾股定理的逆定理》說課稿08-02
勾股定理的逆定理說課稿03-25
勾股定理的逆定理教案08-26
《勾股定理逆定理》教學反思11-01
數學《勾股定理的逆定理》說課稿06-23
《勾股定理的逆定理》教學反思02-12
勾股定理的逆定理教學設計07-05