《平行四邊形-三角形的中位線》教案設(shè)計(jì)
教學(xué)過(guò)程
一、課堂引入
1.平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?
2.你能說(shuō)說(shuō)平行四邊形性質(zhì)與判定的用途嗎?
。ù穑浩叫兴倪呅沃R(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題.)
3.創(chuàng)設(shè)情境
實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)
圖中有幾個(gè)平行四邊形?你是如何判斷的'?
二、例習(xí)題分析
例1(教材P98例4)如圖,點(diǎn)D、E、分別為△ABC邊AB、AC的中點(diǎn),求證:DE∥BC且DE=BC.
分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過(guò)的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來(lái)證明結(jié)論成立,從而使問(wèn)題得到解決,這就需要添加適當(dāng)?shù)妮o助線來(lái)構(gòu)造平行四邊形.
方法1:如圖(1),延長(zhǎng)DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
(也可以過(guò)點(diǎn)C作CF∥AB交DE的延長(zhǎng)線于F點(diǎn),證明方法與上面大體相同)
方法2:如圖(2),延長(zhǎng)DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因?yàn)锳D=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
【思考】:
(1)想一想:①一個(gè)三角形的中位線共有幾條?②三角形的中位線與中線有什么區(qū)別?
。2)三角形的中位線與第三邊有怎樣的關(guān)系?
。ù穑海1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同.中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線.(2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半.)
三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半。
【《平行四邊形-三角形的中位線》教案設(shè)計(jì)】相關(guān)文章:
三角形中位線教案設(shè)計(jì)(通用6篇)07-07
三角形的中位線課件03-19
三角形中位線課件03-19
三角形中位線說(shuō)課稿11-02
三角形的中位線說(shuō)課稿范文11-02
三角形中位線優(yōu)秀課件03-21
三角形中位線定理的教學(xué)設(shè)計(jì)06-12
《三角形的中位線定理》教學(xué)反思11-23