【必備】高一數學教學工作計劃4篇
光陰的迅速,一眨眼就過去了,很快就要開展新的工作了,現在這個時候,你會有怎樣的計劃呢?工作計劃的開頭要怎么寫?想必這讓大家都很苦惱吧,以下是小編為大家整理的高一數學教學工作計劃4篇,歡迎大家分享。
高一數學教學工作計劃 篇1
針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹因人施教,因材施教原則。以學法指導為突破口;著重在讀、講、練、輔、作業等方面下功夫,取得一定效果。
加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然后知不足,課前自學過的同學上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由懂到會。
獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由會到熟。
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而 不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,并要經常把易錯的地方拿出來復習強化,作適當的重復 性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料, 通過分析、綜合、類比、概括,揭示知識間的內在聯系.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由活到悟。
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知欲與學習熱情。
1、讀。俗話說不讀不憤,不憤不悱。首先要讀好概念。讀概念要咬文嚼字,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概 念,是不加定義的。它從常見的我校高一年級學生 、我家的家用電器、太平洋、大西洋、印度洋、北冰洋及自然數等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質特 征是由一組公理來界定的。確定性、無序性、互異性常常是集合的代名詞。
再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限 角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數 列的前n項和Sn.有q1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規 范。如在解對數函數題時,要注意真數大于0的隱含條件;解有關二次函數題時要注意二次項系數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說議 一議知是非,爭一爭明道理。例如,讓學生議論數列與數集的聯系與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元 素是沒有順序的;同一個數可以在數列中重復出現,而數集中的元素是沒有重復的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生 歸類、總結,盡可能把相關知識表格化。如一元二次不等式的解情況列表,三角函數的圖象與性質列表等,便于學生記憶掌握。
2、講。外國有一位教育家曾經說過:教師的作用在于將冰冷的知識加溫后傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意 循序漸進的原則。循序漸進,防止急躁。由于學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天沖刺 一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一 朝一夕可以完成,為什么高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自 動化或半自動化的熟練程度。
每堂新授課中,在復習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生 已經掌握五套誘導公式,可以將求任意角三角函數值問題轉化為求某一個銳角三角函數值的問題。此時教師應進一步引導學生:對于一些半特殊的教(750 度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到復雜的過程,要讓 學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。
例如,講解函數的圖象應從振幅、周期、相位依次各自進行變化,然后再綜合,并盡可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想 方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相 應的內容,比較聯系。讓學生更清楚等差數列和等比數列是兩個對偶概念。
3、練。數學是以問題為中心。學生怎么應用所學知識和方法去分析問題和解決問題,必須進行練習。首先練習要重視基礎知識和基本技能,切忌過早地進行 高、深、難練習。鑒于目前我校高一的生源現狀,基礎訓練是很有必要的。課本的例題、練習題和習題要求學生要題題過關;補充的練習,應先是課本中練習及 習題的簡單改造題,這有利于學生鞏固基礎知識和基本技能。讓學生通過認真思考可以完成。即讓學生跳一跳可以摸得著。一定要讓學生在練習中強化知識、應 用方法,在練習中分步達到教學目標要求并獲得再練習的興趣和信心。例如根據數列前幾項求通項公式練習,在新教材高一(上)P111例題2上簡單地做一些改 造,便可以變化出各種求解通項公式方法的題目;再如數列復習參考題第12題;就是一個改造性很強的數學題,教師可以在上面做很多文章。其次要講練結合。學 生要練習,老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發生過程,在課堂造就民主氣氛,充分傾聽學生意 見,哪怕走點彎路 ,吃點苦頭另一方面,則引導學生各抒己見,評判各方面之優劣,最后選出大家公認的最佳方法。還可適當讓學生涉及一些一題多解的題目,拓展思維空間, 培養學生思維的多面性和深刻性。
例如,高一(下)P26例5求證 。可以從一邊證到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元 法,將無理不等式化為關于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標為 2,最終得解。要求學生掌握通解通法同時,也要講究特殊解法。最后練習要增強應用性。例如用函數、不等式、數列、三角、向量等相關知識解實際應用題。引導 學生學會建立數學模型,并應用所學知識,研究此數學模型。
4、作業。鑒于學生現有的知識、能力水平差異較大,為了使每一位學生都能在自己的最近發展區更好地學習數學,得到最好的發展,制定分層次作 業。即將作業難度和作業量由易到難分成A、B、C三檔,由學生根據自身學習情況自主選擇,然后在充分尊重學生意見的基礎上再進行協調。以后的時間里,根 據學生實際學習情況,隨時進行調整。
5、輔導。輔導指兩方面,培優和補差。對于數學尖子生,主要培養其自學能力、獨立鉆研精神和集體協作能力。具體做法:成立由三至六名學生組成的討論 組,教師負責為他們介紹高考、競賽參考書,并定期提供學習資料和咨詢、指導。下面著重談談補差工作。輔導要鼓勵學生多提出問題,對于不能提高的同學要從平 時作業及練習考試中發現問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導,切忌冷飯重抄和無目標性。要及時檢查輔導效果,做到學生人人 知道自己存在問題(越具體越好),老師對輔導學生情況要了如指掌。對學有困難的同學,要耐心細致輔導,還要注意鼓勵學生戰勝自己,提高自已的分析和解決問 題的能力。
高一數學教學工作計劃 篇2
指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
教研課題
高中數學新課程新教法
教學進度
第一周 集 合
第二周 函數及其表示
第三周 函數的基本性質
第四周 指數函數
第五周 對數函數
第六周 冪函數
第七周 函數與方程
第八周 函數的應用
第九周 期中考試
第十十一周 空間幾何體
第十二周 點,直線,面之間的位置關系
第十三十四周 直線與平面平行與垂直的判定與性質
第十五十六周 直線與方程
第十八十九周 圓與方程
第二十周 期末考試
高一數學教學工作計劃 篇3
本節課在教材中的地位和作用:《不等式的基本性質》,對即將要學習的一元一次不等式的解法乃至高中的不等式的運用都是非常重要的基礎。本節內容掌握的好壞,將直接影響到后面的教學內容。而對于不等式的基本性質1和2,相信絕大部分的學生都不會有很大困難,而不等式的基本性質3,通過對以往學生的了解,發現很多學生會忘記分正負兩種情況,因此在本節新課教學中,我采用了將不等式未知的性質與等式已知的性質進行類比教學,讓學生自己去發現驗證不等式的性質。
一、教學目標:
(一)知識與技能
1.掌握不等式的三條基本性質。
2.運用不等式的基本性質對不等式進行變形。
(二)過程與方法
1.通過等式的性質,探索不等式的性質,初步體會“類比”的數學思想。
2.通過觀察、猜想、驗證、歸納等數學活動,經歷從特殊到一般、由具體到抽象的認知過程,感受數學思考過程的條理性,發展思維能力和語言表達能力。
(三)情感態度與價值觀
通過探究不等式基本性質的'活動,培養學生合作交流的意識和大膽猜想,樂于探究的良好思維品質。
二、教學重難點
教學重點: 探索不等式的三條基本性質并能正確運用它們將不等式變形。
教學難點: 不等式基本性質3的探索與運用。
三、教學方法:自主探究——合作交流
四、教學過程:
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
( 1 )若x-4=12, 則x=16()
( 2 )若3x=12, 則 x=4()
( 3 )若x-4>12 則 x>16()
( 4 )若3x>12則 x>4()
【設計意圖】(1)、(2)小題喚起對舊知識等式的基本性質的回憶,(3)、(4)小題引導學生大膽說出自己的想法。通過復習既找準了舊知停靠點,又創設了一種情境,給學生提供了類比、想象的空間,為后續學習做好了鋪墊。
教師導語:當我們開始研究不等式的時候,自然會聯想到它是否與等式有相類似的性質。這節課我們就通過類比來探究不等式的基本性質。
溫故知新
問題1.由等式性質1你能猜想一下不等式具有什么樣的性質嗎?
等式性質1:等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。
估計學生會猜:不等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。教師引導:“=”沒有方向性,所以可以說所得結果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應該重點研究它在方向上的變化。
問題2.你能通過實驗、猜想,得出進一步的結論嗎?
同桌同學通過實例驗證得出結論,師生共同總結不等式性質1。
問題3.你能由等式性質2進一步猜想不等式還具有什么性質嗎?
等式性質2:等式兩邊都乘或除以同一個數(除數不能是0),等式依然成立。
估計學生會猜:不等式兩邊都乘或除以同一個數(除數不能是0),不等號的方向不變。
你能和小伙伴一起來驗證你們的猜想嗎?(教師鼓勵學生實踐是檢驗真理的唯一標準。)
學生在小組內合作交流,發現了在不等式兩邊都乘或除以同一個數時,不等號的方向會出現兩種情況。教師進一步引導學生通過分析、比較探索規律,從而形成共識,歸納概括出不等式性質2和3。
【設計意圖】猜想作為教學的出發點,啟發學生積極思維,探索規律,讓學生在“做”數學中學數學,真正成為學習的主人。
問題4.在不等式兩邊都乘0會出現什么情況?
問題5.如果a、b、c表示任意數,且a
【設計意圖】把文字語言轉化為數學語言,是數學學習中的一項基本能力,這里有意識地進行滲透,指導學生先作變形再填不等號,對字母c的取值進行討論,培養學生的分類意識,對培養學生的思維能力有十分重要的意義。
【想一想】不等式的基本性質與等式的基本性質有什么相同之處,有什么不同之處?
學生思考,獨立總結異同點。
【設計意圖】引導學生把二者進行比較,有助于加深對不等式基本性質的理解,促成知識的“正遷移”。
綜合訓練:你能運用不等式的基本性質解決問題嗎?
1、課本62頁例3
教師引導學生觀察每個問題是由a>b經過怎樣的變形得到的,應該應用不等式的哪條基本性質。由學生思考后口答。
【設計意圖】對學生進行推理訓練,讓學生明白,敘述要有根據,進一步提高學生的邏輯思維能力和語言表達能力。
2、你認為在運用不等式的基本性質時哪一條性質最容易出錯,應該怎樣記住?
【設計意圖】及時進行學習反思,總結經驗,通過相互評價學習效果,及時發現問題、解決知識盲點,培養學生的創新精神和實踐能力。
3.小明的困惑:
小明用不等式的基本性質將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?
小明可糊涂了……聰明的同學,你能告訴小軍他究竟錯在什么地方嗎?同桌討論。
【設計意圖】通過替人排憂解難,強化對不等式三個基本性質的理解與運用,突出重點,突破難點。
4.火眼金睛
①a>2, 則3a___2a
②2a>3a,則 a ___ 0
【設計意圖】通過變式訓練,加深學生對新知的理解,培養學生分析、探究問題的能力。
課堂小結:
這節課你有哪些收獲?有何體會?你認為自己的表現如何?教師引導學生回顧、思考、交流。
【設計意圖】回顧、總結、提高。學生自覺形成本節的課的知識網絡。
思考題:你來決策
咱們班的王帥同學準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學考慮一下選擇哪家旅行社更合算嗎?
【設計意圖】利用所學的數學知識,解決生活中的問題,加強數學與生活的聯系,體驗數學是描述現實世界的重要手段。既培養了學生用數學知識解決實際問題的能力,又樹立了學好數學的信心。
高一數學教學工作計劃 篇4
教學目標
1通過對冪函數概念的學習以及對冪函數圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。
2使學生理解并掌握冪函數的圖象與性質,并能初步運用所學知識解決有關問題,培養學生的靈活思維能力。
3培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函數的性質及運用
難點:冪函數圖象和性質的發現過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關系?
(總結:根據函數的定義可知,這里p是w的函數)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數 問題5:如果某人 s內騎車行進了 km,那么他騎車的速度 ,這里v是t的函數。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函數解析式有什么共同點嗎?(右邊指數式,且底數都是變量) 這只是我們生活中常用到的一類函數的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數稱為冪函數。
冪函數的定義:一般地,我們把形如 的函數稱為冪函數(power function),其中 是自變量, 是常數。 1冪函數與指數函數有什么區別?(組織學生回顧指數函數的概念) 結論:冪函數和指數函數都是我們高中數學中研究的兩類重要的基本初等函數,從它們的解析式看有如下區別: 對冪函數來說,底數是自變量,指數是常數 對指數函數來說,指數是自變量,底數是常數 例1判別下列函數中有幾個冪函數?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函數具有哪些性質?研究函數應該是哪些方面的內容。前面指數函數、對數函數研究了哪些內容?
(學生討論,教師引導。學生回答。)
3冪函數的定義域是否與對數函數、指數函數一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數 不同,定義域并不完全相同,應區別對待。)教師指出:冪函數y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特別強調,當x為任何非零實數時,函數的值均為1,圖象是從點(0,1)出發,平行于x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函數的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,并歸納解決辦法。引導學生與指數函數、對數函數對照比較。引導學生具體問題具體分析,并作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函數的奇偶性也應具體分析。)
4上述函數①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?
(學生思考,引導作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見后附圖1
讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函數的性質
(1)所有的冪函數在(0,+∞)上都有定義,并且圖象都過點(1,1),
(2)如果a>0,則冪函數的圖象通過原點,并在區間[0,+∞)上是增函數,
(3)如果a<0,則冪函數在(0,+∞)上是減函數,在第一區間內,當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數y=xa中,當a是(1)正偶數、(2)正奇數時,這一類函數有哪種性質?
學生思考,教師講評:(1)在冪函數y=xa中,當a是正偶數時,函數都是偶函數,在第一象限內是增函數。(2)在冪函數y=xa中,當a是正奇數時,函數都是奇函數,在第一象限內是增函數。
例3鞏固練習 寫出下列函數的定義域,并指出它們的奇偶性和單調性:①y=x ②y=x ③y=x 。
例4簡單應用1:比較下列各組中兩個值的大小,并說明理由:
①0.75 ,0.76 ;
②(-0.95) ,(-0.96) ;
③0.23 ,0.24 ;
④0.31 ,0.31
例5簡單應用2:冪函數y=(m -3m-3)x 在區間 上是減函數,求m的值。
例6簡單應用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結
今天的學習內容和方法有哪些?你有哪些收獲和經驗?
1、 冪函數的概念及其指數函數表達式的區別 2、 常見冪函數的圖象和冪函數的性質。
布置作業:
課本p.73 2、3、4、思考5
【【必備】高一數學教學工作計劃4篇】相關文章:
高一數學教學反思12-28
高一數學復習資料必備02-23
高一教學教學工作計劃01-29
高一教學教學工作計劃01-29
高一數學教學反思15篇01-22
高一數學組工作計劃02-16
高一數學教學反思集錦15篇02-22
高一數學教學反思最新5篇02-22
高一數學教學反思(合集15篇)01-22
高一數學老師教學反思范文01-15