《數學之美》讀后感范文(精選13篇)
讀完某一作品后,想必你一定有很多值得分享的心得,此時需要認真思考讀后感如何寫了哦。那么你會寫讀后感嗎?下面是小編為大家整理的《數學之美》讀后感范文,希望能夠幫助到大家。
《數學之美》讀后感 篇1
我是在讀了吳軍博士的《浪潮之巔》之后,發現推薦了《數學之美》這本書。我到豆瓣讀書上看了看評價,就果斷在當當上下單買了一本研讀。本來我以為這是一本充滿各種數學專業術語的書,讀后讓我非常震撼的是吳軍博士居然能用非常通俗的語言將自然語言處理等高深理論解釋的相當簡單。
在李開復博士之后,吳軍博士又成為了目前備受矚目的具有深厚技術背景的作家。對于我來說,讀這本書有掃盲的功效,讓我知道了很多以前不知道的東西。我的想法是在研究生階段,不只局限于導師的研究方向,通過更加廣泛的涉獵知識,去尋找一個自己喜歡的研究領域。如果找到了這樣一個領域,那么我就讀博士。如果沒有的話,那么我想還是工作算了。
1、學科之間的聯系是如此的重要。
全書主要是圍繞著吳軍博士所研究的自然語言處理方向來講述一些應用在這個研究領域的數學知識,用了很大篇幅講解了將通信的原理應用到自然語言處理上所取得的巨大成功。以前學習計算機網絡的時候,學過一個香農定理。對香農的認識就從香農定理開始,因為考研會考相關的計算題。看了這本書才知道,香農的《信息論》對今天的影響真的是不可估量。通過這樣一個過程,我也對以前的本科學校的學科建設產生了一些憂慮。
對于培養計算機人才來說,無論是培養應用型人才,還是培養研究型人才,都應該與電子、通信有一定的交叉,這樣對學生思考問題的啟發與視野的開闊有著重要的作用。計算機本身就是從電子、通信、數學等學科中抽出來的新興的學科,在發展了多年之后,我們發現它仍然需要繼承一些傳統。回想自己的本科四年,上的更多的課時語言類、技術類的課程,這些課程的確對提升學生的就業有很大幫助。但是我想說的是,一個忽視數學基礎、學科交叉的學校,他無法成為一所國內的一流大學。作為一個母校培養的學生,我深知改革的阻力與困難,但是我希望母校的計算機學院能越辦越好。我們現在已經培養出很多高薪優秀的技術人才,我希望將來也能培養出更多的研究型人才。
2、看起來很牛的東西卻用著難以置信的簡單數學原理。
在整本書中讓我最為印象深刻的是解釋Google搜索的原理,居然就是簡單的布爾代數運算。這個的確讓我大跌眼鏡,我一直認為搜索時一個非常復雜而龐大的問題,其數學原理也是相當高深的,但是吳軍博士的解釋讓我大開眼界。與此同時也知道了Google為什么牛,牛在哪了。搜索的原理雖然非常簡單,但是搜索是一個需要對海量數據進行操作的工作。Google在海量數據的處理方面的確是相當先進的,MapReduce、BigTable等等一些技術的發明與應用使得Google在搜索上無出其右。目前分布式存儲、分布式計算、數據倉庫與存儲等研究領域近些年來的大熱也說明Google在引領研究方向上的超凡本領。
3、感謝概率老師的教誨。
在大二的時候,有一個在我們學生中聲望很高的概率老師,他在課程即將結束的時候跟我們說我們將的是前幾章,這些事概率論與數理統計的基礎。對于你們計算機的學生來時,后面的章節才是最有用的,以后一定要好好的研究,弄上一兩個在你的畢業設計上就會讓你畢業設計提升一個檔次,有可能驗收你畢業設計的老師也不懂。我當時對他的話沒有特別在意,我只關心期末考試要考哪些題目,因為我那個學期的概率課基本上都在睡覺,只有他講笑話的時候不睡。
我看《數學之美》后發現馬爾科夫鏈、貝葉斯網絡之后,對以前的概率老師充滿無限的敬意。我發現我們再本科階段學習的《高等數學》、《線性代數》、《概率論與數理統計》在計算機學科應用較多的要數概率論與數理統計,還有一門我學的不好的《離散數學》在計算機中也是有著舉足輕重的地位。
我在看米歇爾的《機器學習》時也發現很多熟悉的概率論與數理統計的知識,這讓我不得不開始考慮重新彌補自己的數學短板。我的想法是在研一這一年把概率論與數理統計、線性代數、離散數學盡我最大的努力補一補,希望他們對我今后的學習有所幫助。
4、說說作者吳軍博士。
吳軍博士寫的書對于學習計算機的學生來說,讀起來有種說不出的親切感。可能這跟他是技術出身的原因有關,流暢的文筆、質樸的文風也讓人讀起來很舒服。看高曉松在優酷上的《曉說》就知道,在硅谷有著眾多的華裔工程師,他們很多都來自清華、北大等國內的名牌大學,這些人在美國實現著自己的夢想。吳軍博士也曾是這其中的一員,我非常希望那些像吳軍博士一樣的牛人們能夠寫書或者來國內的大學做一些演講、論壇等等,開闊一下我們的視野,傳授一下做學問的經驗。
與此同時,我也在想為什么我們國家那么多優秀的IT人才都去了美國。這個問題在我去蘋果公司在東軟信息學院組織的培訓過程中得到了答案,那個南京郵電的老師講了講中國為什么不像美國那么有創造力。我們中國人并不缺乏創造力,很多時候是我們所處的外部環境恰恰阻礙了創新。我想那么多優秀的清華北大學子紛紛到大洋彼岸的美國,正是被美國開放的學術環境、創新氛圍所吸引,每個人都有自己的夢想,他們去美國也是為了能實現自己的夢想。以前都覺得他們是不愛國,現在長大了,對于這個問題看得更清楚了一點。
我想說我們的祖國在經歷了改革開放30多年的飛速發展之后,目前正處于一個關鍵和脆弱的時期。我們靠著人口紅利取得了巨大的成就,我們能不能憑借人才紅利取得更大的成就還是未知。希望有更多的人才能像李開復博士、吳軍博士那樣,為我們這個民族青年的成長和國家發展做出貢獻。
《數學之美》讀后感 篇2
看完《浪潮之巔》,了解了硅谷很多公司尤其是互聯網公司的沉浮,對吳軍的書就非常感興趣,看到吳軍的另一本書《數學之美》,激起了很深的興趣,所以很快把書看完了,普及了很多基礎的知識的同時也啟發了很多想法,感覺很爽。
我自己在交大學的是工科,小學、初中、高中都是一路參加數學競賽,名次都還不錯,也因此沒有參加中考、高考,一路保送,自己對數學有很深的感情,同時女朋友大學也是數學系,有點后悔的大學選了個并不感興趣的專業(交大當時允許我隨便選專業,我沒有跟父母商量自己選了船舶制造)。
看這本書的過程中找到了很多高中在看競賽書的感覺,里面提到的很多概率論(不等式)、圖論、數論的知識是高中數學聯賽復試的重點,高中的時候已經研究的很深了,不過大學荒廢了之后也忘得差不多了,書中提到的很多定理還很有親切感
書名叫做《數學之美》,顯得有些太大,畢竟更多的是吳軍在google做搜索相關工作用到的數學模型的介紹與總結,提到的數學部分大多集中在概率論、圖論、數論領域,所以書名太大了,可能hax說得對,也許是出版社為了賣書取得名字。
不得不說吳軍是一個大家,文字中能夠透露出大家的氣勢,書中不斷的穿插著各種歷史上的大科學家以及科技領域的大家的小故事甚至八卦,從文字中非常能夠感受到吳軍是一個和他們一個層次的人。
書中具體的模型就不介紹了,說幾點我學到的知識,能列出來的都是看完還有點印象的:
1、在互聯網的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?
2、搜索領域中,語言是如何統計的,尤其是如何通過概率模型進行分詞。
3、搜索引擎是如何工作的—網絡爬蟲是怎么回事兒。
4、PageRank是怎么回事?為了解決什么問題?
5、密碼與解密領域的數學模型,尤其提到的二戰時候的各種解密的趣事兒,提到的電視劇《暗算》打算抽空看下
6、拼音輸入法的數學模型。
7、文本自動分類的模型。
看完之后最大的感受就是:
1、數學模型巨大作用,推動著新技術的發展。
2、攻城師是一個偉大的職業,能夠運用這些知識轉化為生產力,非常牛叉。
3、書中提到了很多數學模型都是在不斷的進化、改良、升級,也就是說有人不斷的在做優化,會有不斷更好的模型、更新的技術出現,跟得上技術的發展可能也是比較重要的,否則很多人一直在做某一點上的持續優化就沒有意義了。
但同時技術很大的作用是用來解決實際問題的,書中提到的各個數學模型、各種方法都是為了解決人們的需求或者業務的需求,畢竟公司不是科學研究所,所以追求通過技術直接解決用戶需求或者做成易用的工具給業務人員、運營人員來間接解決用戶需求是挺重要的,可能不是技術人員覺得做到80分就可以了,而是用戶、使用工具的人覺得做到80分是一個重要的衡量。
提到“工具”,想到趙趙說過的一句話:“不好用就等于沒有”,可能就是這個點,同時運用工具的人必須好好的運用,如果用不好甚至不用就太對不起技術了。
《數學之美》讀后感 篇3
上個月去北京開會,順道拜訪了人民郵電出版社,合作多年的編輯陳冀康贈我一本《數學之美》,說一定是我喜歡看的類型。以前也在網上零散看過Google黑板報上吳軍先生的文章,對他的前一本書《浪潮之顛》也有耳聞,但沒有讀過。這次有機會集中閱讀他的文章,確實是一段美妙的體驗。
讀完這本書有一點強烈的感受:工具一定要先進。數學是強大的工具,計算機也是。這兩種工具結合在一起,造就了強大的google、百度、亞馬遜、阿里、京東、騰迅等公司。他們不是百年老店,但他們掌握了先進的工具。
掌握了先進的工具,必將獲得競爭優勢。如果你知道哪里有一群軟件工程師,維護著更大的一群計算機,那么不要猶豫,想辦法使用他們提供的服務,因為這會給你帶來優勢。所以我們使用Google的搜索和郵件,在亞馬遜、京東和淘寶上購物,用QQ和微博聯系朋友,使用銀行卡和網上銀行,利用交易終端在全球市場上進行各種交易。
人類歷史就是一部工具的進化史。石器、青銅、鐵器、火藥、蒸汽機、內燃機、電報、電話、電視、計算機、衛星、互聯網,工具的進步引領著文明的進步。新的工具不斷淘汰老的工具,就像互聯網視頻點播正在淘汰電視、微博正在淘汰報紙、電子書正在淘汰紙質書那樣。
但有一些古老的工具,今天仍有人在學習和使用,甚至在上面花費許多時間。毛筆就是這樣一個例子。今天學習掌握毛筆這種“落后的”工具,還有什么意義?其實我們在使用一些“落后的”工具時,主要是在學習工具背后的思想。
書法和繪畫中蘊含的藝術審美的一般原則,經得起具體工具變遷的考驗。甲骨文、金文、石鼓文所包含的對空間構圖的理解,仍然值得現代人學習。思想工具是比實物工具更強大的工具。
工具組合使用,形成更強大的新工具。《數學之美》中提到的馬爾可夫鏈雖然是很強大的工具,但我在數學課上沒有聽老師提到過。這本書中給我印象最深的例子是余弦定理和新聞分類。余弦定理是中學數學,再加上一些不算很難的多維向量的知識,竟然解決了計算機新聞分類這樣的難題!
每一種工具的背后,是人們對世界的一種理解。蒸汽機和內燃機背后,是力學的世界。電報、電話、電視、計算機和互聯網背后,是信息的世界。數學是抽象的工具,是其他工具背后的工具。每一門學科要成為科學,都少不了數學。也許有一天人們會習慣,用數學工具來分析藝術。數學是一種語言,它源于具體的世界,又高于具體的世界。如果說語言是對世界的認識和描述,如果說數學是一種語言,那么它一定是最接近神的語言。看似毫不相關,卻又能描述萬事萬物。
學習數學有什么用?物理學家費曼當年在大一時提出這個問題,他的師兄建議他轉到物理系。今天,這個問題已不成為問題。具有扎實數學功底的人才正進入各行各業,例如金融業。我認識一個出版社的老總,他招應屆畢業生有一個條件:數學要好。
工具雖好,關鍵還要會用。最終要回到掌握先進工具的人。軟件算法工程師加上計算機集群,這是目前一流企業必需的裝備。正如馬克.安德森所說的,各行各業的一流公司,都是軟件公司。優秀的軟件算法工程師,是人才爭奪的焦點。這樣,我們就容易理解Google招工程師的要求。
對信息加工處理和傳遞的能力不斷增強,是知識經濟的特點。《數學之美》展示了Google如何運用數學和計算機網絡,帶領我們進入云計算和大數據時代。
知識經濟時代的工作,就是在各自的領域中進行科學研究。科學研究要大膽假設,小心求證。科學研究要量化。科學研究要有對比實驗。科學研究要有數學模型。科學研究要有田野調查。科學研究要有文獻查證。科學研究要有同行評議。《數學之美》向我們介紹了自然語言分析領域的科研方法和過程。
任何一個領域,深入進去都有無數的細節。有興趣的人不但沒被這些細節嚇倒,反而會興致勃勃地研究,從而達到令人仰慕的高度。吳軍先生向我們展示了數學和算法中的這些細節,也展示了他所達到的高度。值得我學習。
感謝吳軍先生分享他的知識和深刻見解,也感謝人民郵電出版社出了這樣一本好書。
《數學之美》讀后感 篇4
《數學之美》,一個從事多年工作的谷歌研究員眼中的數學。令我大飽眼福的是,大學里面的數學知識竟能如此廣泛運用到了計算機行業中。
在語音識別、翻譯,還有密碼學領域,有著許多基于概率統計的模型和思想。當然,貝葉斯公式是基礎,應用到隱含馬爾科夫鏈模型,神經網絡模型。
在搜索中,一些相關性的計算,無不用到了概率的知識。在新聞分類中,用到了一些有關矩陣特征值、相似對角化的知識。當然,在圖像處理方面,矩陣變換可謂是無處不在。另外,在識別方面,有一些通信模型,涉及到了信道、誤碼率、信息熵。
最近剛開學也沒什么事,所以就想隨便找幾本書看一下,但最好別是那種太艱深晦澀的書。8月份一直到現在,吳軍寫的這本12年5月出版的《數學之美》一直盤踞京東、亞馬遜等各大網上商城科技類圖書的榜首,當然,還有早些時候出版的《浪潮之巔》也排在很靠前的位置。心想市場的力量應該能幫我挑出好書吧,于是就從圖書館借了一本來,一直到今天晚上把它給看完了。
因此想寫一點東西來總結、反思一下,反正剛開完班會也沒什么事干。寫在前面的建議:如果你不討厭數學的話,強烈推薦這本書,網上也可以下到電子版,不過閱讀感覺上還是很不一樣的。
廢話就不多說了,《數學之美》其實是一本科普類的讀物,所面向的是接受過普通高等教育的人,完全不需要在特定領域有很深的造詣就可以看懂,大概懂一點線性代數、概率統計、組合數學、信息論、計算機算法、模式識別最好(雖然列舉了這么多,其實有些不懂也沒關系……),所以尤其適合信科的人看。內容大部分是和人工智能、計算機相關的,這并非我所學的專業,但作者比較擅長將看似復雜的原理用簡明的語言表達出來,所以可讀性還是很好的。
吳軍是清華大學畢業的,之前任職于Google,后來到了騰訊,這些文章都是發表在Google黑板報上的,后來經過了重寫,所以網上下載的和書本內容有所差異。
由于吳軍本人是研究自然語言處理和語音識別的,所以統計語言模型的東西可能會多一點,不過我覺得這絲毫不妨礙全書數學之美的展現……感覺收獲還是挺多的,知識上的有一些,但更多還是思維方式上的。作者舉了很多例子試圖讓人明白很多看似復雜的高科技背后,基本原理其實是出乎意料簡單的。
比如高準確率的機器翻譯,看上去好像是計算機能夠理解各國語言,隱藏在背后的卻是很多具有大學理科學歷的人都非常清楚的統計模型和概率模型;再比如拼音輸入法的數學原理,早期的研究主要集中在縮短平均編碼長度,比如曾經流行一時的五筆輸入法,而現今真正實用的輸入法卻是有很多信息冗余、編碼長度比較長的拼音輸入法,作者從信息論和市場的角度做了簡單的闡述;又比如新聞的自動分類,許多非IT領域的人可能會認為計算機可以讀懂新聞并進行分類,而實際上只是特征向量的抽取、多維空間中向量夾角的計算,非常非常簡單,但凡學過一點線性代數的人絕對是一看就懂的……當然,完美的實現還需要考慮很多細節和現實的情況,但這并不是這本書所關注的地方,數學之美在于其簡潔而不是繁瑣。
除了對于具體信息技術的剖析之外,作者還花了很大篇幅來講一些杰出人士的成長過程,特別是把這些人的成長經歷和中國學生的成長經歷作對比。雖然作者并沒有明說,但字里行間多少流露出對于中國高等教育以及很多中國企業的批評,一是教育的功利性,缺乏寬松的獨立思考的環境,即使學了一堆理論也難有用武之地,自然也就缺乏創新性的成果;二是中國企業的短視,大部分都不舍得在新框架開發上投資,而是坐享學術界和國外企業的研究成果。
總結一下呢,《數學之美》事實上不能帶給你編程能力的提升,也沒法讓人的數學水平有顯著的提升,但它在很大程度上讓你跳出教科書式的繁瑣細節的束縛,能夠從更宏觀的角度來思考信息世界背后的數學引擎的運行原理,讓人明白看似很高級、復雜的東西背后其實并不如我們所想象的那樣復雜,而我們所學的“枯燥”的數學真的可以“四兩撥千斤”,改變億萬人的生活。
《數學之美》讀后感 篇5
在網上看到有人推薦吳軍博士的《數學之美》,盡管我從事社會科學研究,但對數學的推崇一直如此,所以買來一讀,我的真切體驗正如吳軍博士在書的后記中所說,把自己“境界提升了一個層次”。
那么,對我而言,到底提升了什么境界呢?
首要的肯定是思想境界。在未讀這本書之前,我知道對于這個世界的事件形成的信息集合,人類只有兩種方式可以表達,一個是數字,一個是語言。整個實數的集合是無窮個,而且每個數字都是唯一的;整個世界中的事件也是無窮個的,而且每個事件也時獨一無二的,這樣數學中的數字集合與世界中的事件集合就構成一個一一對應的關系,所以研究數字之間的關系,實際上就是在研究世界中事件之間的關系。語言中的概念和世界中的事件之間也是可以構成一個對應關系的,但問題是,語言中概念的集合是有限的,所以它和數字集合的對應顯然只能是部分對應。
計算機科學的發展,人類需要把語言處理成數字,因為計算機只能識別數字信號,所以“語言的數字化”成為計算機產生以來發展最快、而且最有創新性的領域,而許多華人科學家成為了這個領域的頂尖專家,如李開復,吳軍博士是卓越的科學家之一。
至此我才感到,在計算機主導的世界中,信息化就是數字化,而最難的數字化、也是最有成就的數字化,就是對人類自然語言的數字化,因為人類的信息幾乎100%是用語言承載、傳播的,計算機要與人對話,變成智能化的機器,首先要解決的就是語言的數字化問題。但我們在電腦上自如地輸入文字時、或者拿著手機通話時,我們跟本沒有意識到,那些卓越的語言科學家,早已經把我們的語言,轉化成數字信號,通過輸入、處理、解碼的方式,讓我們無障礙地聯絡、工作。
我似乎感到,語言與數字的關系,就是人與自然關系的接口。套用古希臘畢達哥拉斯學派的觀點,加上我的理解,即是,數是萬物的本原,語言是人的本原!
吳軍博士似乎也在提升我對方法的認識境界。科學研究的思考方式,習慣遵循本質、規律、連續性思維,在語言學研究的早期,人類為了讓計算機識別語言,采用建立語言規則和語言規則數據庫的辦法,但最終以失敗告終(20世紀50-70年代),70年代后科學家采用了語言統計模型,研究取得了突飛猛進。語言統計模型的勝利,再一次證明了宇宙量子模型的信念,世界是不連續的隨機性的粒子構成,人類數千年文明進化出來的語言系統,就是動態的隨機概率事件。
其二,物理思維再也難逃牛頓的經典本質思維方法,即找尋到百分之百確定性的規律,而信息論思維是研究如何把握不確定性現象,利用概率統計是不二法門。
其三,語言本質上就是信息傳播,只有從通信模型視角才能真正理解計算機的功能,對語言的編碼、處理、傳輸、解碼是計算機的強項,計算機是永遠不可能理解語言的意思的。
在《數學之美》中,吳軍博士對他的老師、師兄弟、同事的經歷、掌故進行了敘述,讓我們了解到這些世界一流的學科家、技術精英們的為人處世品質、鮮明個性、科學素養及其管理風格。例如賈里尼克對博士生的嚴酷淘汰,馬庫斯對學生的寬宏大度,但我感到他們有一樣東西是共同的,就是對科學創造、頂尖人才的識別和器重,甚至是無條件的包容。如此為人的境界才是根本,因為偉大的科學創造畢竟是人做出來的,只有崇高的人文精神之下才能造就頂尖的人才、一流的科學和技術。
觀國內的學說界,官風盛行、人情充斥,與這些一流學說群對科學創造的賞識、對個性人才的包容,對科學探索的熱誠,可謂相去甚遠。
看來,我們只能寄希望于年輕一代,但愿吳博士的《數學之美》,能讓我們的學子們,初步體驗到科學精英們卓越的才智與情懷。
《數學之美》讀后感 篇6
本書介紹了Google產品中涉及的自然語言處理、統計語言模型、中文分詞、信息度量、拼音輸入法、搜索引擎、網頁排名、密碼學等內容背后的數學原理。讓我們看到了布爾代數、離散數學、統計學、矩陣計算、馬爾科夫鏈等似曾相識的內容在實際生活中的應用。相比于其他數學題材書籍,吳軍老師把抽象、深奧的數學方法解釋得通俗易懂,書中同時引用了諸多的歷史典故和人物介紹,給人以很多啟發,也讓人由衷感嘆數學的簡潔和強大。
雖是數據專業畢業,但是才疏學淺,無力對數學的美進行闡述。僅就書中兩個比較喜歡的地方發表一點不成熟的見解,與諸位共勉。
其一,在講Google的搜素引擎反作弊時談到做事情的兩種境界“道”和“術”,術就是具體的做事方法,而道則是隱藏在問題背后的動機和本質。在術這個層面解決問題要付出更多的努力,有點類似于我們常說的“頭疼醫頭,腳疼醫腳”,暫時不疼了,過幾天復發了,再去醫治,如此往復,無法從根本上解決;而只有找到了致病原因,才能做到藥到病除,根本治愈。本人之前參與過行內月終自動核對的研發,月終核對初期數據的不一致性只能靠數百業務人員人工核對數據差異,然后修改數據,每月1日都要加班加點,工作量很大,這是從術上解決問題。后來找到了產生差異的原因是會計核算時的利息調整造成的,把這些數據接過來進行相應沖減后差異就消失了,業務人員也不用來加班了,這才是從道上解決問題。
其二,是在做中文網頁排名時提到的從業界成功的秘訣之一:“先幫助用戶解決80%的問題,再慢慢解決剩下的20%的問題。許多時候做事失敗,不是因為人不夠優秀,而是做事的方法不對。一開始追求大而全的解決方案,之后長時間不能完成,最后不了了之”。我們在做項目時也是一樣,業務有時要的功能非常急,可能有些功能也實現不了(比如系統響應時間長、查詢明細不能支持省行等)。這時我們就要將焦點關注在那些可以實現的80%的功能上,哪怕剛剛上線的系統界面丑點,操作復雜點,反應速度慢點,但是至少業務有可用的系統,剩下時間再去優化那剩下的20%。這樣可以幫助我行搶占先機,在與同行業的競爭中取得主動。如果等待我們把所有的細節都搞清楚再動手開發,力求完美,那么很可能系統能夠上線的時候業務已經不需要了。
數學之美,也就是簡單之美。希望大家能夠喜歡數學,喜歡數學之美。
《數學之美》讀后感 篇7
吳軍2012年的作品,源于其在谷歌黑板報的系列文章,講述數學方法在信息技術中的應用,說明了為什么科學研究中方法論如此的重要,以及數學如何簡單優雅地解決問題,直達本質。對比他的其他作品比如《浪潮之巔》、《硅谷之謎》,本書比較偏技術,屬于目前大熱的數據科學(Data Science)范疇,在云計算、大數據和人工智能等成為常態和趨勢的今天,適合所有對IT技術及相關管理人員閱讀。對我而言,最大的收獲包括:
規則vs.算法:自然語言處理,在早期幾十年基于文法規則都無法達到可應用的效果,終于在轉變為基于統計方法且積累了足夠數據后,形成了突破,達到了今日可大規模商用的效果。再次說明了數據及算法在今日的重要性。
一些常見應用涉及的優化算法:搜索相關(分詞、網絡爬蟲、索引、結果排名、廣告及反作弊)、文本處理(新聞分類、廣告相關性、輸入法)、地圖路線規劃、信息指紋、密碼學等。這些算法不止適用于這些應用場景,還可以在其他許多地方借鑒,比如用戶評論分析也需要用分詞和語義分析,許多價值優化算法都需要用到期望值最大化和邏輯回歸等。
優雅的`理論模型:在初始階段,出于時間和成本考慮,在技術實現上可能會使用一些拼湊的方法,甚至山寨,但是這種方法并不可持續,很難進行系統化的優化,開發維護成本都很高,最終會遇到災難性問題。做事情需要有境界,最求簡單而優雅的理論和工程實現,這在長期是非常有好處的。
吳軍使用淺顯易懂的語言,把解決問題的思路和復雜的數學模型講得很清楚,雖然理解延伸閱讀里的具體數學公式還是有些挑戰。其實重要的是思想和方法,具體的實現可以在用到時再進一步的了解。如何用簡單的語言把復雜的技術講清楚,也是我工作的需要,要不斷學習磨練。書里提到了啟發吳軍這方面能力的兩本書,即《從0到無窮大》和《時間簡史》,會有要去看下。
《數學之美》讀后感 篇8
人們發現真理的形式上從來都是簡單的,而不是復雜和含混的。
——牛頓
自小就學數學的我,并不覺得它是美好的。于我而言,數學就像緊箍咒一樣,不能提,一提。就頭疼。
而看了吳軍博士所寫的《數學之美》后,我對數學的感覺,從以前的被動獲取和勉強學習,變成了強烈熱愛和主動積極的學習。這原因就在于我發現了它的價值,它的一枝獨秀,不可或缺的地位,數學的博大精深和對其相關的各類事業的發展的價值已使我深深陶醉其中。這本書中有很多復雜且長的公式,但這并不妨礙大眾的閱讀,因為它并非在于讓你了解更多IT領域的知識,而是用了大量篇幅介紹各個領域的典故,讓我們感受數學思維。這就像李欣教授所說:“成為一個領域的大師有其偶然性,但更有其必然性。其必然性就是大師們的思維方法。”
英國哲學家弗朗西斯·培根在《論美德》這篇文章中講:“美德就如同華貴的寶石,在樸素的襯托下最顯華麗。”數學的美妙,也恰恰在于一個好的思維,好的方法。
在《數學之美》十四章,我被它的標題吸引到了。“余弦定理和新聞的分類”,這倆看似八竿子打不著。卻有著緊密的聯系。可以說,新聞的分類很大程度上依賴的是余弦定理。我們都知道,計算機處理一個問題是讓他去算,而不是像人類一樣理解了它,再去解決。而科學家們遇到這個問題,卻用了另一種思維,他們把文字的新聞變成一組可計算的數字,然后再設計一個算法來算出任意兩篇新聞的相似性。稍詳細一些就是:對于一篇新聞中的所有實詞。計算出它們的TF-IDF值,再把這些值按照其在對應詞匯表的位置依次排列就得到一個向量,這即新聞的特征向量。這時,就可以通過計算兩個向量夾角來判斷對應的新聞主題的接近程度,這也就要用到余弦定理了。我在必修五數學書上學到余弦定理時,很難想象它可以用來對新聞進行分類。在這里我又一次看到了數學工具的用途。
在書中,我也了解到了數學的發展實際上是不斷的抽象和概括的過程。這些抽象了的方法看似離生活越來越遠,但他們最終能找到應用的地方,布爾代數便是如此。
布爾代數的簡單不能再簡單了。運算的元素只有兩個0和1,基本的運算只有“與”、“或”和“非”。幾乎就是我們現在所學的“判斷命題真假”。在布爾代數提出后的80多年里,他確實沒有什么像樣的應用。直到1938年香農在他的碩士論文中指出,布爾代數來實現開關電路。才使得布爾代數成為數字電路的基礎。正是依靠這一點,人類用一個個開關電路最終“搭出”電子計算機。
這些,都能體現作者“簡單即是美”的思想。他在書中也寫道:“數學的精彩之處就在于簡單的模型可以干大事。”這些,也都是我從未感受到過的。并且,在這本書中,作者也用了不少篇幅來介紹通信領域的世界級專家,讓我對真正的世界級學者有更多的了解和理解,比如賈里尼克,Google AK-47的設計者——阿米特·辛格博士,自然語言處理的教父米奇·馬庫斯等等。
愛因斯坦說過:“從希臘哲學到現代物理學的整個科學史中。不斷有人力圖地表面上極為復雜的自然現象歸結為幾個簡單的基本概念和關系,這就是整個自然哲學的基本原理。”這本書把數學在IT領域的美麗予以了精彩表達,我也知道,把一件復雜的事用簡單的語言表達出來,并非易事,這應該也是各界人士都對這本書予以好評的原因吧。
當然,我也明白,欣賞美不是終極目的,更值得我們追求的是創造美境界。
還有,希望未來的自己,無論生活好與壞,都能少一點浮躁,多一點踏實和對自然科學本質的好奇求知。
《數學之美》讀后感 篇9
這本書一共3章,主要介紹了這些數學方法:統計方法、統計語言模型、中文信息處理、隱含馬爾科夫模型、布爾代數、圖論、網頁排名技術、信息論、動態規劃、余弦定理、矩陣運算、信息指紋、密碼學、搜索技術、數學模型、最大熵模型、拼音輸入法、貝葉斯網絡、句法分析、維特比算法、各個擊破算法等。從第一章開始其明了幽默的語言就深深的吸引了我,讓我覺得如果早一點看這本書,也許數學之于我就是另一番天地。
第一章里作者從原始人類的通信方式開始入手,人類最早利用聲音進行的通信依賴于開篇給出的"編碼-傳輸-解碼"的基本原理,指出原始人的通信方式和今天的通信方式沒什么不同,這世界上近現代最普遍的原理大部分都在人類發展的歷史上被無意識的使用著。
第六章信息論給出了信息的度量,它是基于概率的,概率越小,其不確定性越大,信息量就越大。引入信息量就可以消除系統的不確定性,同理自然語言處理的大量問題就是找相關的信息。信息熵的物理含義是對一個信息系統不確定性的度量,這一點與熱力學中的熵概念相同,看似不同的學科之間也會有著很強的相似性。事務之間是存在聯系的,要學會借鑒其他知識。
這本書里也能找到不少在學的課程知識,如大學專業課里,數電總是要比模電簡單不少,而自然界里大部分的信號都屬于模擬信號。所謂模擬信號,是指從時間和數值兩種維度上看來都是連續變化的信號。在實際電路中,模數轉換是一個很重要的過程,將預處理的模擬信號經過模數變換為數字信號,然后進行數字信號處理。而數字化處理有很多優點,比如功能強大、抗干擾能力強、易于傳輸等。
簡而言之,如果沒有數學,就沒有數字信號處理和傳輸的概念,而數字信號傳輸在當下大規模的集成電路里是必不可少的,這是通信成功的基本要求。
作者把生活中遇到的復雜的問題,以簡單清晰,直觀的模型或者公式展現出來。我們可能過于注意生活中的種種奇妙現象,往往忽略了追求其理論邏輯的演繹,而這,也是大部分問題的主要根源。
羅素曾經說過:"數學,如果正確地看,不但擁有真理,而且也具有至高的美";愛因斯坦也曾說過:"純數學使我們能夠發現概念和聯系這些概念的規律,這些概念和規律給了我們理解自然現象的鑰匙。"數學在所有科學領域起著基礎和根本的作用。"哪里有數,哪里就有美"在這里,我也想把《數學之美》真誠推薦給每一位對自然、科學、生活有興趣有熱情的朋友,不管你是從事職業,讀一讀它,會讓你受益良多。
吳軍老師在《數學之美》中提到:"這本書的目的是講道而不是講術。很多具體的搜索技術很快會從獨門絕技到普及,再到落伍,追求術的人一輩子工作很辛苦。只有掌握了搜索的本質和精髓才能永遠游刃有余"回到我們日常的生活中,需要學習的東西、技術太多太多,如果一味地只為去追技術的腳步,那么我們也會很累很累。然而基本的原理卻是沒有怎么變化的。只見森林,不見樹木,難免迷失;站在高處向下看,也許我們一直看不到底,但是站在底處卻是可以看見底的。
《數學之美》讀后感 篇10
前一陣子因興趣研究CMUSphinx這套庫的應用不得要領,就去查看了下一些語音識別的基本原理的文章,偶然碰到了數學之美。其實浪潮之巔也是因此開始看的、結果先一步看完了,畢竟一本歷史書,一本介紹數學和語言處理的,難度不同
說實話,因為初中高中荒廢了太多時間,我的英文和數學基礎比較差,我大學的數學都是勉強修過的。一直以來數學對我是一個很恐怖的學科,也不知道為什么計算機專業對數學要求比較高。我個人就是數學分數很低,但是專業課學的還不錯,唯一好點的數學科目就是離散數學吧,另外的工科數學分析和高等代數都是慘不忍睹的
看完這本書后,我發現我還真是低估了數學的作用,一個復雜的語言識別過程,用統計語言模型竟然用那么簡單的數學模型就解決了,這對我的沖擊很大。另一個對我影響比較大的就是余弦定理和新聞的分類。以前那些各種三角函數的變換、三角函數,各種向量,各種空間圖形在我印象中就只能用于畫設計圖,或者搞空間物理化學等基礎學科的應用上,想著“這種東西和計算機編程有什么關系?要計算角度,庫里不都提供了嗎?”,哪成想到改變一下思路,改變一下方法,就簡單的把那么復雜的分裂問題給解決了。現在想想我當初想法還真是幼稚啊,可惜覆水難收,過去的時間已經回不來了,但至少我現在明白了數學的重要性,總能想辦法彌補的。
不得不說國內的教科書還真是太死板了。很多書上,先不說沒講應用領域和這個能干嗎,有些教科書連推導過程也沒說明白。像我大學時候的那幾本高代高數的教科書,在某一步關鍵的過程寫一句“顯而易見”,然后就莫名其妙的出現了結果,這讓我們基礎差的人情何以堪啊,更何況我問了那些數學好的,他們想推導出那一步也要想好久。后來換了一下同濟大學版,發現同樣的定理,同樣的范圍,就是理解起來容易了不少。果然好書和差一點的書差別真不少。所以我就在網上整理了一些好的數學書籍,等會兒x就貼到文后,以后慢慢補。
"技術分為術和道兩種,具體的做事方法是術,做事的原理和原則是道。這本書的目的是講道而不是講術。很多具體的搜索技術很快會從獨門絕技到普及,再到落伍,追求術的人一輩子工作很辛苦。只有掌握了搜索的本質和精髓才能永遠游刃有余。” ,然后吳軍先生用搜索反作弊的例子漂亮的解釋了這兩種差別。我以前做過的項目里,如果出現沒想過的情況,就加一個異常處理處理特殊情況,本來很簡單的東西,愣是被我搞復雜了。現在想回來,那時候境界太低,連開始的本質和原理都沒弄清楚,就埋頭搞下去了,以后要多注意點。
我一向喜歡實用性強的方法和工具,在這書里我特別喜歡阿米特·辛格博士的那一章。吳軍博士就用寥寥幾頁的描述中講解了辛格博士的處理事情的方法和原則,先幫用戶解決主要的問題,再決定要不要糾結在次要的部分上;要知道修改代碼的所作所為,知其所以然;能用簡單方法解決就用簡單的,可讀性很重要。
不過中間有兩個部分沒搞明白,最大熵模型和貝葉斯網絡,沒搞懂為什么能解決那些問題。貝葉斯網絡還能稍微理解,少了馬爾科夫鏈的線性約束,更自由;但最大熵模型真搞不懂為什么那么好用,以后繼續研究。
總之這是一本很好的書,推薦大家讀一下。
《數學之美》讀后感 篇11
我在想,為什么我們要學習數學?也許這個問題成年人有一萬個答案,可是當我們第一次走進教室,學習數學的時候,大概率還是個孩子,你怎么跟一個孩子解釋為什么要學習數學呢?我把這個問題拋給了一個朋友,他說:“為了提高思維邏輯能力,這是我初中老師在第一節數學課上告訴我們的”。或者一位5歲的小朋友又會問:“什么是邏輯能力呢?”
也許從出生第一天,我們就一直在被動的接收一些東西,父母的勸導,老師的傳授,可5歲的孩子還是會把玩具散落一地,6歲的孩子仍然會因為父母不給買玩具而嗷嗷大哭,無論你怎么勸導一個人,怎么勸誡一個人,他可能仍然會犯你認為會出現的錯誤。我記得有位教育專家這么說:“你告訴寶寶他把玩具弄壞了,就等于丟了10個棒棒糖”,從此以后這個寶寶可能會更加珍惜玩具。這個方法很簡單,但是貌似最有效。數學是什么?數學不就是把復雜的東西簡單化么?
現在我們再回答前面的問題:為什么我要學習數學?我們可以這么跟5歲的小朋友說:“媽媽給你10元錢,讓你買醬油,醬油7元、棒棒糖1元一個,剩下的錢你可以買幾個棒棒糖?”或許想吃棒棒糖的就會苦思冥想一番,或許未來媽媽真的給他10元錢去買醬油,結果回來就變成了一瓶醬油和3個棒棒糖。或者再過一段時間,這位小朋友會選擇6元的醬油,因為可以獲得4個棒棒糖了。他這么計算著:7+3和6+4都可以等于10,那么如果要必須買醬油的情況下,1+9也可以等于10。我們都知道也有1元的袋裝醬油,于是9個棒棒糖到手了。任何知識的魅力都在于自我的發現,只有你對它產生了無限的興趣,你就會不斷的發現它的美,《數學之美》也可以變成《物理之美》。
有些人會說,上面的例子是利益驅動型,不是興趣驅動型,對于一個孩子來說,你能指望他向成人那樣:“我需要的不是物質世界,我需要的是精神世界?”5歲寶寶最喜歡做得事情就是在吃和玩上面,請問,成年人不也是如此么?這就是天性。只不過成年人的自控能力足夠大罷了。
我們回到書本上,這本書是否合適自己?如果沒有專業的數學知識,很難讀懂。但是它又有著無限的魅力,讓你不自覺的讀下去,為什么?因為“數學之美”,雖然大多數人看不懂里面的公式,但是能夠明白數學能解決的問題:概率統計學能夠解決自然語言處理、布爾代數能解決搜索引擎的問題、有限狀態機和動態規劃能解決地圖問題、向量+特征向量+余弦定理能解決自動新聞分類問題、最大熵模型解決金融問題,看著看著我就莫名的產生了一種想要學習算法的沖動,這不就是本書的意義所在么?
最后,我推薦幾個章節希望有興趣的讀者可以關注下:
1. 信息指紋,可以讓復雜的數據用簡單的一串數字存儲
2. 13章,提到的簡單之美。當然之后多次提到
3. 余弦定理(通過向量+特征向量+余弦定理)可以判斷兩條數據的相似性
4. 17章,簡單密碼學(對密碼感興趣的可以看看)
5. 布隆過濾器,用很少的空間存儲大量的數據,從而解決黑名單的問題(黑名單數據量龐大的時候,會增加判斷某一個名單是否出現過的難度)。
6. 29章,分治算法,雖然沒有很明白算法,但是原理其實很簡單:把復雜的東西拆分成若干小的部分,然后進行逐個解決或者說各個擊破
7. 30章,神經網絡,其實沒那么神秘,神經就好比一個網絡(馬爾科夫模型+貝葉斯網絡)中的各個節點而已。
8. 31章,大數據,這章是最推薦看的,而且沒有很多專業的知識,一看就懂。不是什么都可以稱之為大數據的,大數據需要滿足幾個條件:數據的代表性、數據的多維度、數據的完備性。現在有很多公司都自稱自己有大數據,請不要侮辱大數據這個詞。順便說一下像百度這樣的公司,近幾年都在大數據上深耕,據我了解,比如醫療上面的項目,寧可免費做,只要求能夠得到醫療方面的大數據,可見其對大數據的重視程度。
《數學之美》讀后感 篇12
在看吳軍的《數學之美》之前,我并沒有看過他寫的《浪潮之巔》、《文明之光》等書,但是他主理的得到專欄《硅谷來信》已經聽了很久,對吳軍其人頗為了解——本碩畢業于清華大學,然后在約翰霍普金斯大學攻讀博士,02年、10年先后在谷歌和騰訊任職,是著名的自然語言處理和搜索專家,現在主業是硅谷風險投資。他的專欄宣傳標語是“像時代領航者一樣思考”,吳軍也確實具有“時代領航者”那樣的視野和見識,除了專業領域之外,對于日常生活和學習、職業發展也有不俗的見解。
《數學之美》最初是吳軍做谷歌研究員時,在谷歌黑板報上撰寫的一系列文章。雖然谷歌黑板報的本意是讓吳軍從一個科學家的角度介紹一下谷歌的技術,但是他卻更希望“讓做工程的年輕人看到在信息技術行業做事情的正確方法”——因為吳軍剛到谷歌時,發現谷歌早期的一些算法根本沒有系統的模型和理論基礎,而是用“湊”的方法解決問題,工程水平低下。國內這種情況就更加泛濫了。
后來,吳軍又將這一系列博客幾乎重寫了一遍,寫成了《數學之美》,希望它能向非IT行業的從業人員普及一些IT領域的數學知識,能成為茶余飯后消遣的科普讀物。“世界上最好的學者總是有辦法深入淺出地把大道理講給外行聽,而不是故弄玄虛地把簡單的問題復雜化”,因此吳軍盡力以伽莫夫(《從一到無窮大》作者)、霍金為榜樣,力圖將數學之美展示給所有普通讀者。
由于我學習過概率論、數理統計、數據結構,整本書看下來,除了某些章節后的“延伸閱讀”和馬爾可夫鏈等內容外,其他都是可以看懂的。其實看不懂的部分主要是在用數學推理證明文中的論點,即使不看也不會影響閱讀體驗。
吳軍在扉頁講道:“數學之美,首先在于其內容或許復雜而深奧,但形式常常很簡單。同時,數學之美還在于數學原理的通用性和普遍性——數學上的一點突破,可以帶動很多領域和行業的進步。”
我高中時曾因為數學的應用不明確而對其抱有偏見,直到大學接觸到了數學建模。同樣,這本書中講到了許多數學在信息技術工程領域的應用,搭建了數學與應用之間的橋梁。
書中最令人印象深刻的例子就是通信。人與人之間的交流,也算是廣義上的通信,因此通信與我們的生活息息相關。而數學在通信中的應用非常普遍,因為從電報、電話、電視到互聯網,這些現代通信都遵從著信息論的規律,而整個信息論的基礎就是數學。不僅如此,整個人類的自然語言和文字的起源背后,都受到數學規律的支配——因為數字和文字、自然語言一樣,都是信息的載體;語言和數學產生的目的都是為了記錄和傳播信息。
一個典型的通信系統是這樣的:發送者(人或者機器)發送信息時,需要采用一種能在媒體中(比如空氣、電線)傳播的信號,比如語音或者電話線的調制信號,這個過程是廣義的編碼。然后通過媒體傳播到接收方,這個過程是信道傳輸。在接收方,接收者(人或者機器)根據事先約定好的方法,將這些信號還原成發送者的信息,這個過程是廣義上的解碼。
我們平時說話時,大腦就是一個信息源,聲帶、空氣就是如電線、光纜般的信道,聽眾的耳朵就是接收器,而聲音就是傳送的信號。根據聲學信號推測說話者的意思,就是語音識別。
語言實質上是一套編碼、解碼的規則。從字(字母)到詞的構詞法是詞的編碼規則,這套規則是完備的(有限且封閉的集合);從詞到句的語法是語言的編碼規則,這套規則是不完備的(無限和開放的集合)——任何語言都有語法覆蓋不到的地方。
正是由于語法是不完備的規則,所以在自然語言處理的研究當中,基于規則的方法走向了一條死路。隨著計算機性能和可用數據量的增加,基于統計的方法已經被廣泛運用到自然語言處理中。書的第2章到第7章,圍繞自然語言處理的統計學模型,講述得深入淺出,而且對科學界的許多大師級人物和他們的貢獻都做了介紹。
另一個絕妙的應用案例,是第14章《余弦定理和新聞的分類》。我們在高中都學過用余弦定理判斷兩個向量之間的夾角大小,然而不知道這樣做有什么實際意義。如果當時我們的老師能舉出文本分類作為例子,一定能讓同學們興奮不已。
如果由人來做新聞分類,人一定會先把文章讀懂。但是計算機沒有智能,根本讀不懂新聞,它只擁有強大的計算能力。這就要求我們把文字組成的新聞變成一組可以計算的數字,然后設計一個算法,算出任意兩篇新聞的相似性。
新聞傳遞信息,而詞是信息的載體,“同一類新聞用詞都是相似的,不同類的新聞用詞各不相同”。當剔除掉“的、地、得”和“之乎者也”那樣的助詞和虛詞之后,對新聞中剩下的實詞,計算出每個詞的出現頻率(實際上更為復雜,因為只是一篇讀書筆記,我就簡化成“出現頻率”了),再按照詞在詞匯表中出現的順序,將這些頻率值依次排列,就得到了這篇新聞的特征向量。
如果詞匯表中的某個詞在新聞中沒有出現,對應的頻率值為0。如果詞匯表總共有64000個詞,就會得到一個64000維的特征向量,向量中每一個維度的大小代表每個詞對這篇新聞主題的貢獻。新聞就這樣,從文字變成了數字。
一篇10000字的文本,它的特征向量各個維度的數值普遍比一篇500字的文本要大,因此單純比較各個維度的大小沒有太大意義。但是,向量的方向卻有很大的意義。如果兩個向量的方向基本一致,說明它們的新聞用詞比例基本一致。
因此,可以通過余弦定理計算兩個特征向量之間的夾角,判斷對應的新聞主題的接近程度。在真實的文本分類聚合過程中,需要自底向上不斷合并,合并的過程中類別越來越少,而每個類越來越大。
另外值得一提的是,這項研究的動機很有意思。當時某個國際會議需要把提交上來的幾百篇論文交給各個專家評審,把每個研究方向的論文交給這個方向最有權威的專家。作為會議程序委員會主席的雅讓斯基教授為了偷懶,就想了這個將論文自動分類的方法,由他的學生弗洛里安很快實現了。
考慮到多次迭代的計算量,后文又介紹了矩陣奇異值分解的方法,將計算量縮小到1/6。
此外,書中還介紹了搜索引擎算法、拼音輸入法等應用背后的數學模型。第19章《談談數學模型的重要性》中用托勒密的地心說模型(大圓套小圓)舉例,講:“正確的數學模型在科學和工程中至關重要,而發現正確模型的途徑往往是曲折的。正確的模型在形式上通常是簡單的。”
其實這本書中,除了IT領域的數學應用之外,還有許多值得深挖的地方。看書的過程中,我有時會突然從書中的觀點聯想到其他地方看過的觀點。比如講信息和情報時說到斯大林在中蘇邊界的60萬大軍不敢輕易調到歐洲戰場,就聯系到《日本大敗局》里日本明知必敗卻執意南下進攻,偷襲珍珠港;比如講信息論中“冗余度”的概念時,聯系到羅胖“冗余度大是優勢,信息傳播效率反而高”的看法;講到數學模型的重要性時,想到黎曼的非歐幾何對相對論、超空間研究的重大意義……
其實大多情況下,看書只是用來怡情、消遣的手段,和打牌、玩游戲本質上是一樣的。讀書的過程中經常會靈光乍現,這就是讀書的樂趣。
《數學之美》讀后感 篇13
重復的體力勞動已經被機器取代,重復的腦力勞動也將被AI取代。
目前的算法更多的是從統計學、概率論角度來執行,其算法依靠人為設定執行,今后AI的介入,算法會趨于自我迭代、自我演化。
就整體而言機器的搜索、篩選、分析、邏輯推理等,都是基于當前情況最大概率決策。即通過算法計算下一步所有可能情況的概率分布,然后得出實現目標哪種決策成功概率最高,即為下一步的方案。
在這種環境下人最好的方式便是與機器合作,將資源分配到這些大概率事件上,當然也會有一部分人懷有賭徒心態,將資源,甚至全部資源分配到小概率事件上,幻想出現奇跡,而這件事就叫“創新”。
但“創新”才是真正的未來,因為從宇宙角度來看,人類誕生的幾率不到萬億分之一,而這是多么偉大的奇跡,又是多么偉大的創新!
【《數學之美》讀后感范文(精選13篇)】相關文章:
《數學之美》讀書筆記02-10
《唐詩之美》讀后感11-09
《背影》之美10-09
楊玉環之美10-23
賞析《背影》之美10-07
冬夜之美散文10-06
淡之美閱讀答案12-10
音樂之美650字11-03
簡單之美閱讀答案07-26
三情之美散文10-06