關于簡單的軸對稱圖形教案
作為一名無私奉獻的老師,常常要寫一份優秀的教案,編寫教案有利于我們科學、合理地支配課堂時間。如何把教案做到重點突出呢?以下是小編精心整理的關于簡單的軸對稱圖形教案,僅供參考,希望能夠幫助到大家。
教學目標:
1、經歷探索簡單圖形軸對稱性的過程,進一步體會軸對稱的特征,發展空間觀念
2、探索并了解角的平分線、線段垂直平分線的有關性質.
教學重點:
1、角、線段是軸對稱圖形
2、角的平分線、線段垂直平分線的有關性質
教學難點:角的平分線、線段垂直平分線的有關性質
準備活動:準備一個三角形、一張畫好一條線段的紙張
教學過程:
先復習軸對稱圖形的知識,提問:角是不是軸對稱圖形呢?如果是,它的對稱軸在哪里?引起學生思考并通過動手操作,尋找答案.
一、探索活動
教師示范:(按以下步驟折紙)
1、在準備好的三角形的每個頂點上標好字母;A、B、C.把角A對折,使得這個角的兩邊重合.
2、在折痕(即平分線)上任意找一點C,
3、過點C折OA邊的垂線,得到新的折痕CD,其中,點D是折痕與OA的交點,即垂足.
4、將紙打開,新的折痕與OB邊交點為E.
教師要引導學生思考:我們現在觀察到的只是角的一部分.注意角的概念.
學生通過思考應該大部分都能明白角是軸對稱圖形這個結論.
問題2:在上述的操作過程中,你發現了哪些相等的線段?說明你的理由,在角平分線上在另找一點試一試.是否也有同樣的發現?
學生應該很快就找到相等的線段.
下面用我們學過的知識證明發現:
如圖,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求證:OE=OD.
鞏固練習:在Rt△ABC中,BD是角平分線,DE⊥AB,垂足為E,DE與DC相等嗎?為什么?
(1)如圖,OC是∠AOB的平分線,點P在OC上,PO⊥OA,PE⊥OB,垂足分別是D、E,PD=4cm,則PE=__________cm.
(2)如圖,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,點D到AB的距離為5cm,則CD=_____cm.
內容二:線段是軸對稱圖形嗎?
做一做:按下面步驟做:
1、用準備的線段AB,對折AB,使得點A、B重合,折痕與AB的交點為O.
2、在折痕上任取一點C,沿CA將紙折疊;
3、把紙展開,得到折痕CA和CB.
觀察自己手中的圖形,回答下列問題:
(1)CO與AB有什么樣的位置關系?
(2)AO與OB相等嗎?CA與CB呢?能說明你的理由嗎?
在折痕上另取一點,再試一試,你又有什么發現?
學生會得到下面的結論:
(1)線段是軸對稱圖形.
(2)它的對稱軸垂直于這條線段并且平分它.
(3)對稱軸上的點到這條線段的距離相等.
應用:
(1)如圖,AB是△ABC的一條邊,,DE是AB的垂直平分線,垂足為E,并交BC于點D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.
(2)如圖,在△ABC中,AB=AC=16cm,AB的垂直平分線交AC于D,如果BC=10cm,那么△BCD的周長是_______cm.
小結:
(1)角是軸對稱圖形.
(2)角平分線上的點到這個角的兩邊的距離相等.
(3)線段是軸對稱圖形.
(4)垂直并且平分線段的直線叫做這條線段的垂直平分線.簡稱中垂線.
(5)線段垂直平分線上的點到這條線段的兩個端點距離相等.
作業:課本P193習題7.2:1、2、3.
教學后記:
學生對這節課的內容比較難掌握,特別是對于“角平分線上的點到這個角的兩邊距離相等”這個性質,一時難于理解.的部分原因是學生忘記了點但直線的距離是什么一回事.而對于中垂線的理解較好.基本上能找到當中相等的線段,并且用學過的知識予以證明.內容較多,容量較大.課后還要加強理解和練習.
【簡單的軸對稱圖形教案】相關文章:
有關于軸對稱教案03-20
《認識立體圖形》教案03-20
圖形的變換課題教案(精選14篇)08-28
圖形的旋轉教學反思(精選18篇)06-08
認識立體圖形的教學反思03-20
圖形與測量的教學反思(通用8篇)06-12
數學《圖形身份證》教學反思01-04
《認識簡單的路線》教案(精選11篇)02-06