亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

實用文檔>相似多邊形教案

相似多邊形教案

時間:2024-10-01 08:07:38

相似多邊形教案

  作為一名教職工,總歸要編寫教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編幫大家整理的相似多邊形教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

相似多邊形教案

相似多邊形教案1

  一、創(chuàng)設(shè)問題情境,引入新課

  帶領(lǐng)學(xué)生復(fù)習(xí)相似多邊形的性質(zhì)及相似三角形的性質(zhì),并提出疑問“在兩個相似三角形中,是否只有對應(yīng)角相等,對應(yīng)邊成比例這個性質(zhì)?”從而引導(dǎo)學(xué)生探究相似三角形的其他性質(zhì)。

  認(rèn)真聽課、思考、回答老師提出的問題 。

  二、新課講解

  1、做一做

  以實際問題做引例,初步讓學(xué)生感知相似三角形對應(yīng)高的比和相似比的關(guān)系。

  鉗工小王準(zhǔn)備按照比例尺為3∶4的圖紙制作三角形零件,圖紙上的△ABC表示該零件的橫斷面△A′B′C′,CD和C′D′分別是它們的高.

  (1) , , 各等于多少?

  (2)△ABC與△A′B′C′相似嗎?如果相似,請說明理由,并指出它們的相似比.

  (3)請你在圖4-38中再找出對相似三角形.

  (4) 等于多少?你是怎么做的?與同伴交流.

  閱讀課本,弄清題意,根據(jù)已有的經(jīng)驗積極思考,動手操作畫圖,在練習(xí)本上作答。

  依次回答課本提出的4個問題并加以思考

  2、議一議

  根據(jù)上面的引例讓學(xué)生猜測,證明相似三角形對應(yīng)高的比,對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比。

  已知△ABC∽△A′B′C′,△ABC與△A′B′C′的相似比為k.

  (1)如果CD和C′D′是它們的對應(yīng)高,那么 等于多少?

  (2)如果CD和C′D′是它們的對應(yīng)角平分線,那么 等于多少?如果CD和C′D′是它們的對應(yīng)中線呢?

  學(xué)生經(jīng)歷觀察,推證、討論,交流后,獨(dú)立回答。

  3、教師歸納

  相似三角形的`性質(zhì):

  相似三角形對應(yīng)高的比、對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比。

  學(xué)生理解、熟記。

  歸納、類比加深對相似性質(zhì)的理解

  三、課堂練習(xí):

  例題講解,利用相似三角形的性質(zhì)解決一些問題。

  如圖所示,在等腰三角形ABC中,底邊BC=60 cm,高AD=40 cm,四邊形PQRS是正方形.

  (1)△ASR與△ABC相似嗎?為什么?

  (2)求正方形PQRS的邊長.

  閱讀例題,弄懂題意,然后運(yùn)用所學(xué)知識作答。寫出解題過程.

  四、探索活動:

  如圖,AD,A’D’分別是△ABC和△A’B’C’的角平分線,且AB:A’B’=BD:B’D’=AD:A’D’,你認(rèn)為△ABC∽△A’B’C’嗎?

  針對此題,學(xué)生先獨(dú)立思考,然后展開小組討論,充分交流后作答。

相似多邊形教案2

  教學(xué)目標(biāo)

  1.知識與技能

  ① 相似三角形對應(yīng)高的比,對應(yīng)角的比,對應(yīng)叫平分線的比和對應(yīng)中線的比和相似比的關(guān)系。

  ② 利用相似三角形的性質(zhì)解決一些實際問題。

  2.情感與態(tài)度

  ①相似三角形中對應(yīng)線段的比和相似比的關(guān)系,培養(yǎng)學(xué)生的探索精神和合作意識。

  ② 通過運(yùn)用相似三角形的性質(zhì),增強(qiáng)學(xué)生的應(yīng)用意識

  重點(diǎn)與難點(diǎn)

  重點(diǎn):相似三角形中對應(yīng)線段比值的推倒,運(yùn)用相似三角形的性質(zhì)解決實際問題。

  難點(diǎn):相似三角形的性質(zhì)的運(yùn)用。

  教學(xué)思考

  通過例題的分析講解,讓學(xué)生感受相似三角形的性質(zhì)在實際生活中的應(yīng)用。

  解決問題

  在理解并掌握相似三角形對應(yīng)高的`比,對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比的過程中,培養(yǎng)學(xué)生利用相似三角形的性質(zhì)解決現(xiàn)實問題的意識和應(yīng)用能力

  教學(xué)方法

  引導(dǎo)啟發(fā)式

  課前準(zhǔn)備

  幻燈片

  教學(xué)設(shè)計

  教師活動 學(xué)生活動

  一、創(chuàng)設(shè)問題情境,引入新課

  帶領(lǐng)學(xué)生復(fù)習(xí)相似多邊形的性質(zhì)及相似三角形的性質(zhì),并提出疑問“在兩個相似三角形中,是否只有對應(yīng)角相等,對應(yīng)邊成比例這個性質(zhì)?”從而引導(dǎo)學(xué)生探究相似三角形的其他性質(zhì)。

  認(rèn)真聽課、思考、回答老師提出的問題 。

  二、新課講解

  1、 做一做

  以實際問題做引例,初步讓學(xué)生感知相似三角形對應(yīng)高的比和相似比的關(guān)系。

  鉗工小王準(zhǔn)備按照比例尺為3∶4的圖紙制作三角形零件,圖紙上的△ABC表示該零件的橫斷面△ABC,CD和CD分別是它們的高.

  (1) , , 各等于多少?

  (2)△ABC與△ABC相似嗎?如果相似,請說明理由,并指出它們的相似比.

  (3)請你在圖4-38中再找出一對相似三角形.

  (4) 等于多少?你是怎么做的?與同伴交流.

  閱讀課本材料,弄清題意,根據(jù)已有的經(jīng)驗積極思考,動手操作畫圖,在練習(xí)本上作答。

  依次回答課本提出的4個問題并加以思考

  2、議一議

  根據(jù)上面的引例讓學(xué)生猜測,證明相似三角形對應(yīng)高的比,對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比。

  已知△ABC∽△ABC,△ABC與△ABC的相似比為k.

  (1)如果CD和CD是它們的對應(yīng)高,那么 等于多少?

  (2)如果CD和CD是它們的對應(yīng)角平分線,那么 等于多少?如果CD和CD是它們的對應(yīng)中線呢?

  學(xué)生經(jīng)歷觀察,推證、討論,交流后,獨(dú)立回答。

  3、教師歸納

  總結(jié)相似三角形的性質(zhì):

  相似三角形對應(yīng)高的比、對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比。

  學(xué)生理解、熟記。

  歸納、類比加深對相似性質(zhì)的理解

  三、課堂練習(xí):

  例題講解,利用相似三角形的性質(zhì)解決一些問題。

  如圖所示,在等腰三角形ABC中,底邊BC=60 cm,高AD=40 cm,四邊形PQRS是正方形.

  (1) △ASR與△ABC相似嗎?為什么?

  (2) 求正方形PQRS的邊長.

  閱讀例題材料,弄懂題意,然后運(yùn)用所學(xué)知識作答。寫出解題過程.

  四、探索活動:

  如圖,AD,AD分別是△ABC和△ABC的角平分線,且AB:AB=BD:BD=AD:AD,你認(rèn)為△ABC∽△ABC嗎?

  針對此題,學(xué)生先獨(dú)立思考,然后展開小組討論,充分交流后作答。

  五、課時小結(jié)

  指導(dǎo)學(xué)生結(jié)合本節(jié)課的知識點(diǎn),對學(xué)習(xí)過程進(jìn)行總結(jié)。

  本節(jié)課主要根據(jù)相似三角形的性質(zhì)和判定判定推導(dǎo)了相似三角形的性質(zhì)、相似三角形的對應(yīng)高的比、對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比。

  學(xué)生暢所欲言,談學(xué)習(xí)的體會,遇到的困難以及獲得的啟發(fā)。

  六、布置課后作業(yè):

  課后習(xí)題節(jié)選

  獨(dú)立完成作業(yè)。

  板書設(shè)計

  29.6相似多邊形及其性質(zhì)

  一、1.做一做

  2.議一議

  3.例題講解

  二、課堂練習(xí)

  三、課時小節(jié)

  四、課后作業(yè)

相似多邊形教案3

  教學(xué)目標(biāo):

  1、知識與技能:使學(xué)生經(jīng)歷相似多邊形概念的形成過程,了解相似多邊形的定義,并能根據(jù)定義判斷兩個多邊形是否相似。

  2、過程與方法:在探索相似多邊形本質(zhì)特征的過程中,進(jìn)一步發(fā)展學(xué)生歸納、類比、反思、交流等方面的能力,體會反例的作用。

  3、情感態(tài)度與價值觀:通過觀察、推斷得到數(shù)學(xué)猜想、獲得數(shù)學(xué)結(jié)論的過程,體驗數(shù)學(xué)活動充滿了探索性和創(chuàng)造性。

  教學(xué)重點(diǎn):探索相似多邊形的定義過程,以及用定義去判斷兩個多邊形是否相似。

  教學(xué)難點(diǎn):探索相似多邊形的定義過程。

  教學(xué)過程:

  (一)創(chuàng)設(shè)情景,導(dǎo)入新課。(3分鐘)

  由于學(xué)生已經(jīng)學(xué)習(xí)了形狀相同的圖形,在這里我向?qū)W生展示一組圖片(課件),引導(dǎo)學(xué)生從中找出形狀相同的圖形。學(xué)生回答后,利用課件演示抽象出多邊形。

  大多數(shù)學(xué)生可能會指出黑板邊框的內(nèi)外邊緣所圍成的矩形的形狀也相同。我緊接著創(chuàng)設(shè)懸念:這兩個矩形的形狀相同嗎?

  利用課件演示,把內(nèi)邊緣的矩形的長和寬按相同比例放大后不能與外邊緣矩形重合。此時的學(xué)生肯定倍感疑惑,急切想探個究竟。教師順勢導(dǎo)入新課:

  那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來探究相似多邊形。

  (二)自主學(xué)習(xí),合作探究。(15分鐘)

  1、動手實驗,初步感知定義。

  課前發(fā)給每個小組一套相似多邊形的圖片(其中包括兩個相似三角形、一個等邊三角形、兩個相似四邊形),組織學(xué)生按形狀相同給多邊形找朋友。然后引導(dǎo)學(xué)生以小組為單位從中選擇一組多邊形探究解決下面問題。

  (1)在這兩個多邊形中,是否有相等的內(nèi)角?設(shè)法驗證你的猜想。

  (2)在這兩個多邊形中,相等的內(nèi)角的兩邊是否成比例?

  (設(shè)計意圖:引導(dǎo)學(xué)生分組討論、探究、驗證、交流,并進(jìn)行演示,著重引導(dǎo)學(xué)生說明驗證的方法,無論學(xué)生提出什么樣的驗證方式,只要有道理,教師都應(yīng)給予充分肯定和鼓勵。)

  對相等內(nèi)角的兩邊是否對應(yīng)成比例這個問題學(xué)生可能會感到困難,由于學(xué)生已經(jīng)學(xué)習(xí)了成比例線段,我會利用這一點(diǎn)啟發(fā)學(xué)生運(yùn)用測量、計算的方法解決這一難點(diǎn)。

  利用多媒體演示形狀相同的六邊形的對應(yīng)角相等,然后讓學(xué)生觀察計算得到,相等的內(nèi)角的兩邊成比例。然后給出對應(yīng)角、對應(yīng)邊的概念,引導(dǎo)學(xué)生明確對應(yīng)角、對應(yīng)邊的含義。

  2、特例探究,進(jìn)一步體驗定義。 (課件出示問題)

  例:下列每組圖形形狀相同,它們的對應(yīng)角有怎樣的關(guān)系?對應(yīng)邊呢?

  (1)三角形ABC與正三角形DEF;

  (2)正方形ABCD與正方形EFGH.

  (設(shè)計意圖:引導(dǎo)學(xué)生通過自主探究解決這個問題后進(jìn)行適當(dāng)引申,使學(xué)生認(rèn)識到:邊數(shù)相同的正多邊形都相似。)

  3、歸納總結(jié),形成概念。

  教師設(shè)問:回憶一下我們剛才探究過的每一組多邊形,你能發(fā)現(xiàn)它們的共同特點(diǎn)嗎?(課件出示四組圖形)

  (設(shè)計意圖:引導(dǎo)學(xué)生嘗試用自己的語言敘述定義,教師給予規(guī)范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來引導(dǎo)學(xué)生回憶表示全等三角形時應(yīng)注意的問題,也就是要把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上,然后引導(dǎo)學(xué)生用類比的方法得到:在記兩個多邊形相似時也要把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上,說明相似比與兩個多邊形敘述的順序有關(guān)。)

  4、深化理解。

  (1)滿足什么條件的兩個多邊形相似?

  (2)如果兩個多邊形相似,那么它們的對應(yīng)角和對應(yīng)邊有什么關(guān)系?

  (設(shè)計意圖:使學(xué)生認(rèn)識到:相似多邊形的定義既是最基本最重要的判定方法,也是最本質(zhì)最重要的特征。)

  (三)辨析研討,知識深化。(14分鐘)

  1、議一議:

  (1)觀察下面兩組圖形,圖(1)中的兩個圖形相似嗎?為什么?圖(2)中的兩個圖形呢?與同桌交流。 (課件出示圖形)

  (2)如果兩個多邊形不相似,那么它們的'各角可能對應(yīng)相等嗎?它們的各邊可能對應(yīng)成比例嗎?

  (3)如果兩個菱形相似,那么他們需要滿足什么條件?

  (設(shè)計意圖:為了培養(yǎng)學(xué)生從多角度理解問題,我運(yùn)用教材中兩個典型的反例,引導(dǎo)學(xué)生討論探究,使學(xué)生認(rèn)識到:不相似的兩個多邊形的角也可能對應(yīng)相等,不相似的兩個多邊形的邊也可能對應(yīng)成比例;反過來說:只具備各角分別對應(yīng)相等或各邊分別對應(yīng)成比例的多邊形不一定相似。進(jìn)而使學(xué)生明確:判斷兩個多邊形形相似,各角分別對應(yīng)相等、各邊分別對應(yīng)成比例這兩個條件缺一不可。通過正反兩方面的對照,能使學(xué)生更深刻地理解相似多邊形的定義。這是個易錯點(diǎn),教學(xué)時應(yīng)注意給學(xué)生留出充分思考交流的時間。另外在設(shè)計時,我在教材原有內(nèi)容的基礎(chǔ)上添加了菱形的情況(見課件),引導(dǎo)學(xué)生探索兩個菱形相似需要滿足什么樣的條件。)

  2、做一做。

  設(shè)問:學(xué)到這兒,你認(rèn)為黑板邊框內(nèi)外邊緣所成的這兩個矩形相似嗎?請你計算說明。課件出示問題:

  一塊長3m、寬1.5m的矩形黑板,鑲在其外圍的木質(zhì)邊框?qū)?.5cm.邊框的內(nèi)外邊緣所成的矩形相似嗎?為什么?(學(xué)生自主探索解決)

  (設(shè)計意圖:為了滿足學(xué)生多樣化的學(xué)習(xí)需求,使不同的學(xué)生都能獲得令自己滿意的數(shù)學(xué)知識,我把此題進(jìn)行了適當(dāng)?shù)耐卣购脱由臁?

  拓展一:如果將黑板的上邊框去掉,其他條件不變。

  那么邊框內(nèi)外邊緣所成的矩形相似嗎?為什么?

  拓展二:在拓展一的基礎(chǔ)上,如果矩形的長為2a,寬為a,

  邊框的寬度為x。那么邊框內(nèi)外邊緣所成的矩形還相似嗎?為什么?

  (設(shè)計意圖:引導(dǎo)學(xué)生討論計算,解決問題。目的是讓學(xué)生明確并不是所有相互套疊的兩個矩形都不相似。使學(xué)生初步認(rèn)識到直觀有時是不可靠的,研究數(shù)學(xué)問題需要在提出猜想的基礎(chǔ)上進(jìn)行推理和計算,幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)。)

  (四)學(xué)以致用,鞏固提高。(6分鐘)

  慧眼識金!

  1、判斷下列各題是否正確:

  (1)所有的矩形都相似。

  (2)所有的正方形都相似。

  (3)對應(yīng)邊成比例的兩個多邊形相似 問題解決!

  2、下圖中兩面國旗相似,則它們對應(yīng)邊的比為 。

  3、如圖,兩個正六邊形廣場磚的邊長分別為a和b,它們相似嗎?為什么?

  (課件出示圖形)

  (設(shè)計意圖:為了體現(xiàn)相似圖形在生活中的廣泛應(yīng)用,我以實際問題為背景設(shè)計練習(xí)題。這是一組基礎(chǔ)題,意在鞏固相似多邊形的定義以及相似比的計算。)

  (五)課堂小結(jié),知識升華。(2分鐘)

  師生共同完成。

  (設(shè)計意圖:教師首先肯定學(xué)生在課堂中大膽的猜想和思維的積極性,然后引導(dǎo)學(xué)生從幾方面進(jìn)行反思:我學(xué)會了什么,我最感興趣的是,我發(fā)現(xiàn)了什么,我能解決,我獲得的數(shù)學(xué)方法是幫助學(xué)生構(gòu)成新的知識網(wǎng)絡(luò),形成技能。)

  (六)布置作業(yè):

  1、 P113 習(xí)題第3題

  2、畫一畫:在方格紙中畫出兩個相似多邊形。

  3、探究題:小林在一塊長為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框?qū)挒?0cm,邊框內(nèi)外邊緣所圍成的兩個矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對課堂上做一做的再次拓展和延伸:當(dāng)矩形的長與寬的比不再是2:1時,邊框內(nèi)外邊緣所圍成的兩個矩形還相似嗎?

  板書設(shè) 4、相似多邊形

  定義: 各角對應(yīng)相等,

  各邊對應(yīng)成比例

  表示方法:∽

  相似比:

【相似多邊形教案】相關(guān)文章:

教案:多邊形內(nèi)角和與外角和05-25

《初步認(rèn)識多邊形》公開課教案(通用10篇)07-05

多邊形內(nèi)角和定理證明05-17

《多邊形的內(nèi)角和》的教學(xué)設(shè)計(精選11篇)04-13

《左傳》教案10-24

存貨教案02-28

愛蓮說的經(jīng)典教案03-20

《牧場上的家教案》經(jīng)典教案設(shè)計03-20

茶花賦教案04-06

《什么蟲》教案01-08

用戶協(xié)議