積化和差公式的證明和記憶
積化和差公式的證明和記憶
積化和差,指初等數學三角函數部分的一組恒等式。
公式
sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的負號】
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
證明
法1
積化和差恒等式可以通過展開角的和差恒等式的右手端來證明。
即只需要把等式右邊用兩角和差公式拆開就能證明:
sinαsinβ=-1/2[-2sinαsinβ]
=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]
=-1/2[cos(α+β)-cos(α-β)]
其他的3個式子也是相同的證明方法。
(該證明法逆向推導可用于和差化積的計算,參見和差化積)
法2
根據歐拉公式,e^ix=cosx+isinx
令x=a+b
得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
記憶方法
積化和差公式的形式比較復雜,記憶中以下幾個方面是難點,下面指出了特點各自的簡單記憶方法。
【1】這一點最簡單的記憶方法是通過三角函數的值域判斷。sin和cos的值域都是[-1,1],其和差的值域應該 是
[-2,2],而積的值域確是[-1,1],因此除以2是必須的。
也可以通過其證明來記憶,因為展開兩角和差公式后,未抵消的兩項相同而造成有系數2,如:
cos(α-β)-cos(α+β)
=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)
=2sinαsinβ
故最后需要除以2。
【積化和差公式的證明和記憶】相關文章:
高中物理公式總結之功和能轉化公式03-19
熱學和電學部分的初三物理公式總結06-18
多邊形內角和定理證明05-17
教案:多邊形內角和與外角和05-25
初三的物理公式電學公式總結人教版03-19
《電和磁》的教案03-04
總結的作用和概念03-21
謙辭和敬辭總結09-20
寫作:審題和立意04-05
《開花和結果》教案02-02