亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

實用文檔>數學四下《3的倍數的特征》教學反思

數學四下《3的倍數的特征》教學反思

時間:2024-09-27 03:25:53

數學四下《3的倍數的特征》教學反思(精選12篇)

  在發展不斷提速的社會中,我們的任務之一就是課堂教學,反思過往之事,活在當下之時。如何把反思做到重點突出呢?以下是小編為大家收集的數學四下《3的倍數的特征》教學反思,希望對大家有所幫助。

數學四下《3的倍數的特征》教學反思(精選12篇)

  數學四下《3的倍數的特征》教學反思 篇1

  數學四下《3的倍數的特征》教學反思

  《3的倍數的特征》是學生在學習過2和5倍數特征之后的又一內容,因為2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出3的倍數特征。

  但上課的過程中,學生并沒有按照我想的思路去進行,一個學生在我沒有預想的前提下說出了3的倍數的特征,所以我準備讓四人小組去合作交流發現3的倍數的.特征也沒有進行。只是讓學生兩人去再說一說剛才那個學生的發現,加以理解,鞏固。

  這節課結束后,我感覺以下方面做得不好:

  1、備課不充分。自己在備課時沒有好好的去備學生,沒有做好多方面的預設;

  2、在觀察百數表到后面總結3的倍數特征時,都應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學生能說出的盡量讓學生說,多放手,相信學生。

  數學四下《3的倍數的特征》教學反思 篇2

  《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。

  1、找準知識沖突激發探索愿望。

  找準備知識中沖紛激發探索,在第一環節中我先讓學生復習2.5的倍數特征并對一些數據做出了判斷而后我們“誰來猜測一下3的倍數特征”激發學生探究的愿望。由于學生剛剛復習了2.5倍數的特征,知道只要看一個數的`個位,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的愿望,這樣不反有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2、激發學習中的困惑,讓探究走向深入。

  找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,而我從孩子們的學號為入重點,讓孩子們判斷自己的學號是否是3的倍數,并再次探究3的倍數特征,并且發現3的倍數和數字排列順序的有關系。但和這個數的個位上的數字有關。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗證,這種層層遞進環環相扣的方法,促使探究活動走向深入,讓學生獲得更大的發展。

  3、課后反思使之完美。

  這節課結束后,我感覺最大的缺憾之處,最后點選了的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得可持續發展的動力。

  數學四下《3的倍數的特征》教學反思 篇3

  《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展。

  新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養學生在實際的學習活動中,善于發現問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數的特征,有規律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規律判斷,但學生的能力沒能培養,智力得不到開發。本課的設計采用了啟發與發現相結合的教學方法,激勵學生大膽猜想,動手實踐,去發現規律,形成技能,升華至應用于生活。

  本課主要使學生在原有認知的基礎上產生認知沖突,進而產生新的探索欲望,突出了對學生“提出問題—探索問題—解決問題”的能力培養,學生能在猜想、操作、驗證、交流、反思、歸納的數學活動中,獲得較為豐富的數學經驗,也有助于創造性的培養。當然,培養學生的創造個性,僅僅停留在教學活動的情境上是不夠的,教師首先要具有創造精神,注重設計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發學生的創新欲望,學生的創造意識才能得以培養,個性才能充分發展。本課重點是要理解3的倍數特征,能夠準確判斷一個數是不是3的倍數。我采用的是復習導入,先和學生們一起回憶了一下

  2、5的'倍數特征,然后出示本課的教學目標。新授環節先讓學生猜測一下3的倍數會有哪些特征呢?接著采用數形結合的方法,學生動手操作,在1~100的數字卡里找一找3的倍數,然后用自己喜歡的符號圈起來,然后觀察小組討論匯報。發現3的倍數特征不像

  2、5的倍數特征一樣,看一個數的末尾了,引導學生是不是要看這個數其它的數位上的數呢?學生發現也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數特征是一個數各個數位上數字相加的和。找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,剛開始我們先采用課本上百數表來研究,結果在一個班實踐后認為效果并不是很理想,由于數太多,讓學生觀察3的倍數的這些數時,并從中找出相同的地方,結果,很多同學找了與本節課毫無關系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數代表百數表,于是我設計了一個表格,讓學生用除法計算的方法找到3的倍數的特征,并觀察這些數,這些數的個位分別從0到9都有,讓學生知道3的倍數的特征跟數的個位沒有關系,然后從中又把像45和54,75和57,123和321等特殊的數單獨展示出來,讓學生觀察從中找出規律。結果我又重新上了這節課,效果比上節課要好。

  這節課結束后,我感覺最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。

  數學四下《3的倍數的特征》教學反思 篇4

  站在跳板上學習數學——3的倍數的特征教學反思

  《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展 。

  “3的倍數的特征”屬于數論的范疇,離學生的生活較遠,有一定的難度。而2、5的倍數的特征是學生學習這一課的基礎。所以,在教學“3的倍數的特征”時,我首先以學生原有認知為基礎,激發學生的探究欲望,利用學生剛學完“2、5的倍數的特征”產生的負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2、5的倍數的特征”遷移到“3的倍數的特征”的問題中,由此產生認知沖突,萌發疑問,激發強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。但針對這樣的環節,也有老師提出反對意見,他們認為教師在教學中不僅要注重知識的正遷移,還要防止負遷移的產生,要能正確地預見學生學習中可能出現的錯誤,采取適當措施,防患于未然,達到所謂“防微杜漸”的目的;他們滿足于學生的一路凱歌,陶醉于學生的盡善盡美,視學生的差錯為洪水猛獸。但是課堂就是學生出錯的地方,出錯是學生的.權利,學生的錯誤是勞動的成果,關鍵是要看我們教師如何看待學生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學的巨大財富”。正式因為如此,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學生總會出現各種各樣的錯誤,我們的課堂教學不應該有意識地去避免學生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應變的機智,給學生一個出錯的機會和權利。

  其次,看一個數是不是2、5的倍數,只需看這個數的個位。個位是0、2、4、6、8的數就是2的倍數,個位是0、5的數就是5的倍數。而3的倍數特征則不然,一個數是不是3的倍數,不能只看個位,而要看它所有所有數位上的數的和是不是3的倍數。在教學中,我和大多數的教師一樣,更多的是關注兩者的不同,注重讓學生對兩種特征進行區分,因此,教學中往往刻意對比強化,凸顯這種差異。但這樣的處理很明顯在數論的角度上割裂了兩者的共同點。實際上教師在引導學生發現3的倍數的獨特特征的同時,也應該注意引導學生歸納2、3、5倍數特征的共同點。別小看這寥寥數言的引導,實質它蘊藏著深意。因為從數論角度講一個數能否被2、3、5乃至被其它數整除,其研究的理論基礎是一樣的:即如果各個數位上的數被某數除,所得的余數的和能夠被某數整除,那么這個數也一定能被某數整除。當然,小學生由于知識和思維特點的限制,還不可能從數論的高度去建構與理解。但是,這并不意味著教師不可以作相應的滲透。事實上,正是由于有了教師看似無心實則有意的點撥:“其實3的倍數特征與2、5的倍數特征其實有一點還是很像的,不知同學們注意到沒有?”學生才可能從2、3、5倍數特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯系:2、3、5倍數特征可以看作是一樣的,都是看它是不是誰的倍數,只不過判斷一個數是不是2、5的倍數,只需看這個數的個位是不是2、5的倍數,而判斷一個數是不是3的倍數就要看它所有數位的和是不是3的倍數。

  數學四下《3的倍數的特征》教學反思 篇5

  《3的倍數特征》進行了兩次教學授課,第一次是新授,第二次是錄課重復授課。下面就本節課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學生編號,根據編號做游戲。由于每個學生的編號不一樣,所以在做游戲的時候,每個學生集中注意力,傾聽游戲要求,激發了學生的學習興趣。設置游戲的目的是復習2或5倍數的特征,同時,對3的倍數特征的學習產生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學生充分地認識到依據2或5的倍數特征的思想已經行不通了,從而開始新的探索。在探索過程中借助“百數表”,讓學生獨立地圈出3的倍數,圈完后互相交流3的倍數的個位有什么特點,再次否定了之前的思維定式。由于個位上沒有特點,所以引導學生從其他的角度觀察,學生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發現,所以本節課中我關注到學生的思考困境,引導學生從斜著觀察的角度思考探索。當學生斜著觀察時能發現個位上的數字依次減1,十位上的數字依次加1,適時提出“什么是沒有變的?”問題一提出,學生恍然大悟,發現:個位和十位上的數的和沒有變!順其自然的知道了3的倍數具有這樣規律。經過研究每一斜行發現:個位和十位上的數的和不變,都是3的倍數。知道了這個規律后,下面開始延伸這個規律。一方面:驗證百數表內其他不是3的倍數是否具有這個規律?另一方面:比100大的數,三位數、四位數、五位數等是否具有這個規律?通過兩方面的驗證,再次強調了這個規律是普遍存在的,而這時3的倍數特征已經歸結為:一個數各位上的數的和是3的倍數,這個數就是3的倍數。知道了3的倍數特征之后通過練習鞏固加強,練習的設計是三道題,這三道題設計為不同的層次,第一題是基礎題,第二題是拔高題,第三題是解決問題。通過做題發現學生本節課掌握得不錯。最后,對本節課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學生明白為什么2或5的倍數特征只看個位就可以了,而3的.倍數特征需要看所有數位。從而達到學知識不但要知其然還要知其所以然。整個教學過程中,學生能在猜想、操作、驗證、交流、歸納的數學活動中獲得豐富的數學經驗,同時這也有利于學生創造力的培養。通過本節課的教學以及學生的掌握情況,最終檢測本節課的目標較好的達成。但反思這節課的不足,我覺得在每個環節上的過渡應該更加的自然。另外,在小組討論的時候應多關注學生的交流,對學生進行適時地指導;诘谝还澱n的優點和不足,進行了第二次的授課即錄課。由于學生們已經學習了過本節課,所以對于學生們來說已經是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節課我做了適當的調整。本節課我更多關注的是數學方法和思維方式的培養。其中體現在:

  1、學生在舉例驗證猜想的時候,讓學生體會反例的作用,如果有一個反例的存在,就說明猜想的結論是錯誤的。

  2、在探索3的倍數特征時,對于100以內3的倍數,應如何著手驗證,怎么選取數來驗證,這一環節讓學生體會:在研究規律的時候,優先選擇數比較多的這一組,讓學生明白如果有規律更容易探索和發現。

  3、在拓展規律的時候,采用舉了大量的數據,證明了規律的普遍存在,讓學生體會規律的適用范圍。

  4、在做練習的時候,第2小題,關注學生思考問題是否全面,關注學生的思考過程。

  5、練習的第3小題,一道解決問題的題目,通過讓學生讀題、審題、分析題之后,再思考。這一道題學生展示了多種的做題方法,體現了方法的多樣性,同時也說明學生的思維是活躍的。本節課中的不足,練習中第3題學生的做法沒有完全的在黑板上板書,另外,本節課中學生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學生還不夠。在今后的教學中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學水平,設計出學生更能接受和喜歡的課。

  數學四下《3的倍數的特征》教學反思 篇6

  《3的倍數的特征》的教學是五年級數學上冊第三單元“因數與倍數”中一個重要知識點,是學生在學習了2和5的倍數特征之后的新內容。

  3的倍數的特征與2和5的倍數的特征有很大差別,2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我在本節課設計理念上,突出以學生為主體,教師為主導,方法為主線的原則,從現象到本質,從質疑到解疑。當然本節課也存在很多問題,下面我進行做幾點反思。

  1、瞄準目標,把握關鍵

  在導入環節,我通過復習舊知識進行“熱身”。由于學生已經掌握了2和5倍數的特征,知道只要看一個數的個位就能判斷一個數是不是2或5的倍數,因此在學習3的倍數特征時,自然會把“看個位”這一方法遷移過來,盡管是負遷移。實際上,鮮明的沖突讓學生發現卻不是這樣,于是新舊知識間的矛盾沖突使學生產生了困惑,有了新舊知識的矛盾沖突,就能激發起學生探究的愿望,這樣有利于學生對新知識的掌握,有效的將新知識納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2、經歷過程,授之以漁

  猜想3的倍數特征是基礎,在學生得出猜想后,我便引導學生找出百數表中3的倍數去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內即可發現3的倍數中,個位上可能是10個數字中的任何一個,之前的判斷已經站不住腳。之后繼續探究,在100以內,基本可以發現規律,但為了嚴謹,必須跳出百數表,在100以上的`數中去驗證這個規律。最后,引導學生理解這個結論背后的原理,為什么它的規律和之前的規律不一樣?這樣一來,學生不僅學會本節課知識,更掌握了科學的探究方法。

  3、追求本真,知其所以然

  本節課的目標定位上,我考慮到學生的已有認知基礎,我決定引導學生探索3的倍數的特征背后的道理。這一嘗試建立在我對學生學情把握的基礎上,因為3的倍數的特征的結論一但得出,運用起來沒有難度,后面的練習往往成了“休閑時間”,而進一步提升探索難度,無疑是開發思維的良好契機。我運用數形結合的方法逐步深入,最后還是把話語權留給學生,這樣就給予不同學生各自適應的個性化學習方略,真正做到了讓每位同學在數學上都得到發展。

  數學四下《3的倍數的特征》教學反思 篇7

  3的倍數是在學習了2、5的倍數特征的基礎上進行學習的,我讓孩子們提前進行了預習,通過授課發現孩子們的預習沒有達到預想的效果。學生在匯報時能夠圈出3的倍數,而且非常準確,在匯報3的倍數的方法時,他們大多數是借助結論得出來的,沒有體現出他們研究的過程。因此,我在課上進行了及時的指導,把孩子們需要匯報的過程進行了詳細的說明。孩子們很快理解了我的意思,立刻進行了新的分工。第一位同學匯報了他們找到的3的倍數,并介紹的找3的倍數的方法即,用這個數除以3,看商是不是整數而且沒有余數。接下來匯報百數表中前十個3的倍數,讓大家觀察個位上的數字,通過觀察發現3的倍數個位上是0-9的任意一個數,不能像2、5的倍數特征只看個位的特殊數就行了。因此只看個位不能確定是不是3的倍數。

  由于孩子們有了提前的預習,孩子們心目中已經有了結論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進行了滲透,讓學生駐足片刻,把握課堂的結構。

  第三個環節,孩子們發現斜著看每個數的各位逐漸加一,十位逐漸減一,因此個位上的數字和十位上的數字之和不變,而且都是3的倍數。讓孩子試著總結結論:兩位數個位上和十位上的數字之和是3的倍數,那么這個數也是3的倍數。

  第四個環節,其實并不是把3的倍數特征總結出來了就完成任務了。這個結論只是通過觀察百數表得出的關于兩位數的結論,兩位數滿足這個特征,是不是所有的數都適用呢?于是讓孩子試著寫一個三位數、四位數而且是3的倍數,然后用這個結論進行驗證,看是否符合。孩子們先試著寫幾個3的倍數,老師羅列到黑板上,然后分別用用各個數位之和相加的.方法和除以3是否有余數的方法進行驗證。驗證的結果是肯定的,因此得出的結論適合所有的數。

  到這里孩子們對于3的倍數特征已經理解的很透徹了,做起練習來也顯得得心應手。孩子體驗了結論得出的過程,每一個環節的設計都有他的意圖,在每個環節孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數學課。

  數學四下《3的倍數的特征》教學反思 篇8

  《3的倍數的特征》是人教版義務教材新課程第八冊的教學內容,對這節課的教學設計,有從2、5的倍數的特征中引入的、有讓學生通過擺火柴棒研究的,其中不乏好點子好設計。但是,大部分老師都要拋出一個問題讓學生思考:“火柴棒的總根數跟3的倍數有什么聯系?”或者干脆問“3的倍數和數位上的數字的和有什么關系?”總覺得教師對學生的引導過于直接,對于五年級的學生,經過這樣的提問,一般都能找到3的倍數的特征,也能用語言來表述。我認為,我們的關鍵不但要讓學生找到3的倍數的特征,更應該引導學生怎樣去發現數位上的數字的和與3的倍數之間的關系。我考慮,能不能在本節課中運用分類,讓學生自主探究呢?以下是兩個教學片段:

  教學片段一:

  讓學生用30秒時間,寫3的倍數,大部分學生都從小到大寫了25個左右

  老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務。

  師:請你給自己寫的3的倍數分類,看看能不能找到規律。限時2分鐘。

  (結束)學生回答。

  生1:3、6、9;12、15、18、21、24……按位數分類。(有3人和他一樣分)師:按位數分類,那么3位數里哪些是3的倍數呢:103、208是3的倍數

  嗎?(學生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

 。ㄓ32人和他一樣)

  師:你分類的標準是什么?

  生2:個位是0——9的都歸為一類,共兩類。

  生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。

  師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數,能迅速判斷嗎?(生無語)

  師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發現3的倍數的特征,是有價值的呢?(學生陷入沉思)

  以上學生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數的特征,卻沒有意義。大部分學生是從2、5的倍數的特征中受到啟示,這是學生的經驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學生,不要走彎路呢?我認為,負遷移也是一種寶貴的經驗,經歷過挫折,對知識的理解就會更加深刻,無需刻意回避。

  教學片段二:

  師:繼續觀察這些數,還有其它分類方法嗎?限時5分鐘。(陸續有學生舉手,5分鐘后,共有15位學生舉手,巡視一遍。)

  師:誰來介紹自己新的分類方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  師:你的`分類標準是什么?

  生1:第一類,每個數數位上的數字的和是3;第二類,每個數數位上的數字的和是6;第三類,每個數數位上的數字的和是9;第四類,每個數數位上的數字的和是12;以此類推。

  師:誰來幫他“以此類推”?

  生2:每個數數位上的數字的和是15,也是3的倍數;每個數數位上的數字的和是18,也是3的倍數。

  生3:每個數數位上的數字的和是21,也是3的倍數;每個數數位上的數字的和是24,也是3的倍數。

  師:你能用一句話來表達嗎?

  生4:每個數位上的數字的和是3、6、9、12、15、18等,這個數就是3的倍數。

  生5:每個數位上的數字的和是3的倍數,這個數就是3的倍數。

  師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(前5個)105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍數,105也是3的倍數。

  生5:1加1加1等于3,3是3的倍數,111也是3的倍數。

  ……

 。ㄒ粋學生根據規律回答,其他學生用豎式驗證。)

  生6:3的倍數的特征是找到了,但這樣的分類太亂。我一共分3類:

  第一類:每個數數位上的數字的和是3:3、12、21、30;

  第二類:每個數數位上的數字的和是6:6、15、24、42、51;

  第三類:每個數數位上的數字的和是9:9、18、27、36、45……,

  這樣的數是3的倍數。

  師:那老師的這些數:339、504、918、1527、2442屬于哪一類呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數沒有超出這三類的。

  師:厲害。ㄗ屍渌麑W生說了兩個四位數,用他的方法來判斷是不是3的倍數,大概有三十個左右的學生能用這樣的方法分析。老師又舉了一個反例。)

  師:誰能用幾句話來概括?

  生6:一個數,每個數位上的數字的和是3、6、9,如果和大于9的,數位上的數再加,直到出現一位數,如果是3、6、9,那么這個數就是3的倍數。

  師:真佩服你們!

  第二天,有學生告訴我他發現了一種更快判斷3的倍數的方法,不用把數位上的數都加起來,比如538,3是3的倍數就不要管它了,只要5加8加一下,13不是3的倍數,538就不是3的倍數。我又說了一個五位數2076,學生分析,6是3的倍數,不去管它,2加7是9,9是3的倍數,整個數就是3的倍數。

  學生的探究能力如此之強,是我沒想到的,學生快速判斷3的倍數的方法,實際上已經綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學生新的探究的開始。

  從本節課中,我有幾點小小的感悟:

  一、教師不要害怕學生探究的失敗。學生第一次探究的失敗,完全是正常的,這是他們運用已有的經驗,進行探究后的結果。盡管這種經驗的遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學中比比皆是,我們不但不能回避,而且要好好利用,要讓學生積累對數學活動的經驗,同時能將“經驗材料組織化”。

  二、教師要給學生創造探究的機會。學生的探究能力其實是老師意想不到的。最后一位學生對3的倍數的概括(一個數,每個數位上的數字的和是3、6、9,如果和大于9的,數位上的數再加,直到出現一位數,如果是3、6、9,那么這個數就是3的倍數。),盡管實際的意義不是很大,但是它更具有橫向的關聯,2的倍數特征是:個位是0、2、4、6、8的數是2的倍數;5的倍數的特征是個位是0或5的數是5的倍數。或許,這種類比聯想更容易讓學生理解新的知識,更何況是學生自己探究出來的。其實很多教學內容我們都可以讓學生進行探究,關鍵是教師如何給學生提供一個探究的載體,一種探究的環境。

  三、教師對學過的知識要經常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經常把學生學過的知識,在新知中不知不覺地再應用,再鞏固。溫故而知新,在復習與鞏固中,學生會對舊知有更高的認識,更深的理解,也容易排除學生對新知的畏難思想。同時要經常地對各種知識進行串聯,編織學生知識的網絡,使學生認識到各種知識之間是相互關聯相互作用的,以利于學生解決一些實際問題或綜合性問題。

  四、教師要經常在教學中滲透一些數學思想。分類是一種數學思想,同時也是一種數學思維的工具。人教版小學數學第一冊學生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標準,分類的原則,學生在不知不覺中有了感悟。借助分類,有40%的學生找到了3的倍數的特征,學生完全是在觀察、嘗試、驗證的基礎上探究的,是自主的行為研究。在小學數學中,滲透了很多數學思想,如集合、對應、假設、比較、類比、轉化、分類、統計思想等,在教學中合理地運用這些數學思想,對學生學習數學的影響是深遠的,也會讓我們的數學探究活動更有意義,更有價值。

  數學四下《3的倍數的特征》教學反思 篇9

  3的倍數的特征比較隱蔽,學生一般想不到從“各位上數的和”去研究,本課注重引導學生經歷探索的過程。上課開始先讓學生回顧舊知,2的倍數和5的倍數有什么特征,學生們發現都只要看一個數個位上的數就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數有什么特征呢?猜測是一種常用的數學思考方法,讓學生猜測3的倍數有什么特征,能較好地調動學生的學習積極性。由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數一定是3的倍數”,還有學生猜測:“各位上的數字加起來是3,6,9一定是3的倍數”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。

  下面進入驗證環節,先學生判斷自己的學號是不是3的倍數,再在這些學號中挑出個位上是0,3,6,9的數,通過交流這些數不一定都是3的`倍數。學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢。于是進入到動手操作環節,在此基礎上,利用計數器轉移探索的方向,讓學生用3顆算珠在計數器上任意擺數,得出結果:擺出的數都是3的倍數,到這里有幾個學生顯得很興奮。隨后用5顆算珠實驗,發現擺出的數都不是3的倍數,到這里學生中已經有一些議論,他們都有了發現。為了讓更多的學生看出其中的神奇,我將自主權交給了學生們,自己選擇算珠的顆數進行了第三次實驗,然后板書出每組的實驗結果,從結果的數據中,學生們都很興奮地發現了所用算珠的顆數是3顆,6顆,9顆,撥出的數都是3的倍數,每個數所用算珠的顆數,也是每個數各位上數的和。把算珠顆數抽象成各位上數的和,是理解3的倍數特征的關鍵。

  “試一試”是教學的第三步,如果一個數不是3的倍數,那么這個數各位數的和不是3的倍數。利用反例進一步證實3的倍數的特征,體現了數學的嚴謹性和數學結論的確定性?上г谶@一點上,我很倉促地指著黑板上算珠顆數是4顆,5顆,7顆,8顆時,所擺出的數都不是3的倍數,直接告訴了學生,而沒有讓學生自己舉出反例。隨后設計了一系列習題,使學生得到鞏固提高。

  整節課只能說順利地走了下來,對于教者我來說從中發現了自己教學上的不足之處,在今后的教學中,我將不斷學習,及時總結,虛心請教,以進一步提高自己的教學業務水平。

  數學四下《3的倍數的特征》教學反思 篇10

  【初次實踐】

  課始,讓學生任意報數,師生比賽誰先判斷出這個數是不是3的倍數,正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想!袄蠋煟抑榔渲械拿孛埽灰迅鱾數位上的數加起來,看看是不是3的倍數就行了!”“對!在數學書上就有這句話!薄钟袔讉學生偷偷地打開了數學書!霸趺崔k?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調整了預設,變“探索”為“驗證”,將結論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數表中3的倍數圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……

  [反思]

  課堂上經常會出現類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發現”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執行操作命令的“計算器”,又能獲得哪些有益的發展?如果經常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經驗,而且在已經揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發現,體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發學生探究的熱情,促使學生進行深入探究呢?

  【再次實踐】

 。ㄅc第一次教學情況基本相同,有些學生能夠正確地判斷一個數是不是3的倍數,這時一些學生卻依然感到困惑,我設法將這一困惑激發出來。)

  師:同學們真能干,這么快就知道了3的倍數的特征,上節課我們學習了2、5的倍數的特征只和什么有關?

  生:只和一個數的個位有關。

  師:與今天學習的知識比較一下,你有什么疑問嗎?

  生1:為什么判斷一個數是不是3的倍數只看個位不行?

  生2:為什么判斷一個數是不是2、5的倍數只看個位,而判斷是不是3的倍數要看各位上數的和?

  ……

  師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數為什么只和它的個位有關。

 。▽W生嘗試探索,教師適時引導學生從簡單數開始研究,借助小棒或其他方法進行解釋。)

  生1:我在擺小棒時發現,十位上擺幾就是幾十,它肯定是2、5的倍數,因此只要看個位擺幾就可以了。

  生2:其實不用擺小棒也可以,我們組發現每個數都可以拆成一個整十數加個位數,整十數當然都是2、5的倍數,所以這個數的個位是幾就決定了它是否是2、5的倍數。

  師:同學們想到用“拆數”的方法來研究,是個好辦法。

  生3:是否是3的倍數只看個位就不行了。比如13,雖然個位上是3的倍數,但10卻不是3的倍數;12雖然個位不是3的倍數,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數和個位上的數合起來是不是3的倍數就行了。

  生4:我也是這樣想的,我還發現十位上余下的數正好和十位上的數字一樣。

  生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數和十位上的數不一樣了,比如40除以3只余1,余下的數就和十位數字不同。

  生(部分):對。

  生4:其實40不要拆成39和1,你拆成36和4,余下的數不就和十位數字相同了嗎?

  生6:也就是說整十數都可以拆成十位上的數字和一個3的`倍數的數。這樣只要看十位上的數和個位上的和是不是3的倍數就可以了。

  師:同學們確實很厲害!那三位數、四位數是不是也有這樣的規律呢?

  學生用“拆數”的方法繼續研究三、四位數,發現和兩位數一樣,只不過千位、百位上余下的數要依次加到下一位上進行研究。3的倍數的特征在學生頭腦中越來越清晰。

  師:同學們通過自己的探索,你們不僅發現了3的倍數的特征,還弄清了為什么有這樣的特征,F在你還有哪些新的探索想法呢?

  生1:我想知道4的倍數有什么特征?

  生2:我知道,應該只要看末兩位就行了,因為整百、整千數一定都是4的倍數。

  師:你能把學到的方法及時應用,非常棒!

  生3:7或9的倍數有什么特征呢?

  師:同學們又提出了一些新的、非常有價值的問題,課后可以繼續進行探索。

  [反思]

  1. 找準知識間的沖突,激發探究的愿望。學生剛剛學習了2、5的倍數的特征,知道只要看一個數的個位,因此在學習3的倍數的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數的特征,卻要把各個位上的數加起來研究。于是新舊知識之間的矛盾沖突使學生產生了困惑,“為什么2或5的倍數只看個位?”“為什么3的倍數要把各個位上的數加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。

  2. 激活學習中的困惑,讓探究走向深入。創造和發現往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發出來,通過學生間相互啟發、相互質疑,對問題的思考漸漸完整而清晰。學生不但經歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發現,探究能力也得到切實提高。學生在學習中難免會產生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當的方法將其激活,促使探究活動走向深入,讓學生獲得更大的發展。當然,學生在學習中可能產生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。

  3. 溝通知識間的聯系,讓學生不斷探究。顯然,2、5的倍數的特征與3的倍數的特征是相互聯系的,其研究方法是相通的(都可以通過“拆數”進行觀察),特征的本質也是相同的。這種研究方法和特征本質的及時溝通,激發了學生繼續研究4、7、9……的倍數的特征的好奇心,促使學生不斷探究,將學習由課內延伸到課外,并在探究過程中建構起對數的倍數特征的整體認識,感悟數學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續發展的動力。

  數學四下《3的倍數的特征》教學反思 篇11

  《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。

  一、猜想:讓學生回顧舊知,2的倍數和5的倍數有什么特征,學生們發現都只要看一個數個位上的數就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數有什么特征呢?由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的數一定是3的倍數”。

  二、驗證::先讓學生在百數圖中找找看,顯然像13、16、19等等的數不是3的.倍數,學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢。

  三、探究:在此基礎上,讓學生在百數圖中找出3的倍數的數,如果把這些3的倍數的個位數字和十位數字進行調換,它還是3的倍數嗎?(讓學生動手驗證)

  12→2115→5118→8124→4227→72

  我們發現調換位置后還是3的倍數,那3的倍數有什么奧妙呢?

  如果把3的倍數的各位上的數相加,它們的和是3的倍數。

  四、驗證:下面各數,哪些數是3的倍數呢?

  2105421612992319876

  小結:從上面可知,一個數各位上的數字之和如果是3的倍數,那么這個數就是3的倍數。這樣結論的得出水到渠成。

  數學四下《3的倍數的特征》教學反思 篇12

  《3的倍數的特征》是五年級下冊數學第二單元“因數與倍數”中的一個知識點,是在學生已經認識倍數和因數、2和5倍數的特征的基礎上進行教學的。由于2、5的倍數的特征從數的表面的特點就可以很容易看出——根據個位數的特點就可以判斷出來。但是3的倍數的特征卻不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的.困難。

  因而在《3的倍數的特征》的開始,我先復習了2、5的倍數的特征,然后學生猜一猜什么樣的數是3的倍數,學生自然而然地會將“2.5的倍數的特征”遷移到“3的倍數特征的問題中,得出:個位上是3、6、9的數是3的倍數,后被學生補充到“個位上是0—9的任何一個數字都有可能是3的倍數,”其特征不明顯,也就是說3的倍數和一個數的個位數沒有關系,因此要從另外的角度來觀察和思考。在問題情境中讓學生產生認知沖突產生疑問,激發強烈的探究欲望。接著提供給每位學生一張百數表,讓他們圈出所有3的倍數,拋出問題:把3的倍數的各位上的數相加,看看你有什么發現,引導學生換角度思考3的倍數特征。接下來,經過進一步提示,引導學生觀察各位上數的和,發現各位上的和是3的倍數。于是,形成新的猜想:一個數如果是3的倍數,那么它各位上數的和也是3的倍數。

  為了驗證這一猜想,我補充了一些其他的數,如49×3=147,166×3=498等,使學生進一步確認這一結論的正確性。還可以任意寫一個數,利用這一結論來驗證,如3697,3+6+9+7=25,25不是3的倍數,而3697÷3也不能得到整數商,因此,它不是3的倍數。通過這樣的方式也使學生認識到:找出某個規律后,還要找出一些正面的、反面的例子進行檢驗,看是不是普遍適用。

  為了使學生更好地掌握3的倍數的特征,進行課堂練習時,我還把一些數各個數位上的數經過不同的排列,再讓學生判斷,以加深對“各位上數的和是3的倍數”的理解。如完成“做一做”第1題時,學生判斷完45是3的倍數后,教師可以再讓學生判斷一下54是不是3的倍數。

  利用2、5、3的倍數的特征來判斷一個數是不是2、5或3的倍數,其方法是比較容易掌握的,但要形成較好的數感,達到熟練判斷的程度,也不是一、兩節課所能解決的,還需要進行較多的練習進行鞏固。

  這節課結束后,我感到自主學習和合作探究是這節課中最重要的兩種學習方式,學生通過自主選擇研究內容,舉例驗證等獨立思考和小組討論,相互質疑等合作探究活動,獲得了數學知識。學生的學習能動性和潛在能力得到了激發。在自主探索的過程中,學生體驗到了學習成功的愉悅,同時也促進了自身的發展。但最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化。

【數學四下《3的倍數的特征》教學反思】相關文章:

《2、5、3的倍數的特征》的教學反思(精選10篇)02-22

因數和倍數教學反思03-19

《倍數和因數》聽課教學反思(通用14篇)07-31

數學教學反思03-19

關于最小公倍數的教學反思(通用18篇)01-16

職高數學教學反思03-19

時間與數學的教學反思03-19

數學的教學反思大全03-19

數列數學教學反思03-20

蘇教版數學教學反思03-20

用戶協議