反函數的教學設計
反函數的教學設計
教學目標
1.使學生了解反函數的概念;
2.使學生會求一些簡單函數的反函數;
3.培養學生用辯證的觀點觀察、分析解決問題的能力。
教學重點
1.反函數的概念;
2.反函數的求法。
教學難點
反函數的概念。
教學方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數的定義、記法、習慣記法。(記作A);
第二張:本課時作業中的預習內容及提綱。
教學過程
(I)講授新課
(檢查預習情況)
師:這節課我們來學習反函數(板書課題)§2.4.1 反函數的概念。
同學們已經進行了預習,對反函數的概念有了初步的了解,誰來復述一下反函數的定義、記法、習慣記法?
生:(略)
(學生回答之后,打出幻燈片A)。
師:反函數的定義著重強調兩點:
(1)根據y= f(x)中x與y的關系,用y把x表示出來,得到x= φ(y);
(2)對于y在c中的任一個值,通過x= φ(y),x在A中都有惟一的值和它對應。
師:應該注意習慣記法是由記法改寫過來的。
師:由反函數的定義,同學們考慮一下,怎樣的映射確定的函數才有反函數呢?
生:一一映射確定的函數才有反函數。
(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。
師:在y= f(x)中與y= f -1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數值;后者y是自變量,x是函數值。)
在y= f(x)中與y= f –1(x)中的x都是自變量,y都是函數值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請同學們談一下,函數y= f(x)與它的反函數y= f –1(x)兩者之間,定義域、值域存在什么關系呢?
生:(學生作答,教師板書)函數的定義域,值域分別是它的反函數的值域、定義域。
師:從反函數的概念可知:函數y= f (x)與y= f –1(x)互為反函數。
從反函數的概念我們還可以知道,求函數的反函數的方法步驟為:
(1)由y= f (x)解出x= f –1(y),即把x用y表示出;
(2)將x= f –1(y)改寫成y= f –1(x),即對調x= f –1(y)中的x、y。
(3)指出反函數的定義域。
下面請同學自看例1
(II)課堂練習 課本P68練習1、2、3、4。
(III)課時小結
本節課我們學習了反函數的概念,從中知道了怎樣的映射確定的函數才有反函數并求函數的反函數的方法步驟,大家要熟練掌握。
【反函數的教學設計】相關文章:
《標牌設計》的教學設計07-19
《校徽設計》的教學設計07-20
《欣賞設計》教學設計06-19
《欣賞與設計》教學設計06-10
教學設計是指科學設計教學目標06-26
教學的設計07-08
春日教學設計教學06-02
《9加幾教學設計》教學設計范文06-05
《刻舟求劍》的教學設計07-22
《紀念》的教學設計07-22