《5.2.1平行線》教學設計
《5.2.1平行線》教學設計
人教版七年級數學下冊《5.2.1平行線》教學設計PPT課件導學案教案
5.2.1 平行線
[教學目標]
1.理解平行線的意義,了解同一平面內兩條直線的位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
4.了解“三線八角”并能在具體圖形中找出同位角、內錯角與同旁內角;
4.了解平行線在實際生活中的應用,能舉例加以說明.
[教學重點與難點]
1.教學重點:平行線的概念與平行公理;
2.教學難點:對平行公理的理解.
[教學過程]
一、復習提問
相交線是如何定義的?
二、新課引入
平面內兩條直線的位置關系除平行外,還有哪些呢?
制作教具,通過演示,得出平面內兩條直線的位置關系及平行線的概念.
三、同一平面內兩條直線的位置關系
1.平行線概念:在同一平面內,不相交的兩條直線叫做平行線.直線a與b平行,記作a∥b.
(畫出圖形)
2.同一平面內兩條直線的位置關系有兩種:(1)相交;(2)平行.
3.對平行線概念的理解:
兩個關鍵:一是“在同一個平面內”(舉例說明);二是“不相交”.
一個前提:對兩條直線而言.
4.平行線的畫法
平行線的畫法是幾何畫圖的基本技能之一,在以后的學習中,會經常遇到畫平行線的問題.方法為:一“落”(三角板的一邊落在已知直線上),二“靠”(用直尺緊靠三角板的另一邊),三“移”(沿直尺移動三角板,直至落在已知直線上的三角板的一邊經過已知點),四“畫”(沿三角板過已知點的邊畫直線).
四、平行公理
1.利用前面的教具,說明“過直線外一點有且只有一條直線與已知直線平行”.
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行.
提問垂線的性質,并進行比較.
3.平行公理推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.即:如果b∥a,c∥a,那么b∥c.
五、三線八角
由前面的教具演示引出.
如圖,直線a,b被直線c所截,形成的8個角中,其中同位角有4對,內錯角有2對,同旁內角有2對.
六、課堂練習
1.在同一平面內,兩條直線可能的位置關系是 .
2.在同一平面內,三條直線的交點個數可能是 .
3.下列說法正確的是( )
A.經過一點有且只有一條直線與已知直線平行
B.經過一點有無數條直線與已知直線平行
C.經過一點有一條直線與已知直線平行
D.經過直線外一點有且只有一條直線與已知直線平行
4.若∠ 與∠ 是同旁內角,且∠ =50°,則∠ 的度數是( )
A.50° B.130° C.50°或130° D.不能確定
5.下列命題:(1)長方形的對邊所在的直線平行;(2)經過一點可作一條直線與已知直線平行;(3)在同一平面內,如果兩條直線不平行,那么這兩條直線相交;(4)經過一點可作一條直線與已知直線垂直.其中正確的個數是( )
A.1 B.2 C.3 D.4
6.如圖,直線AB,CD被DE所截,則∠1和 是同位角,∠1和 是內錯角,∠1和 是同旁內角.如果∠5=∠1,那么∠1 ∠3.
七、小結
讓學生獨立總結本節內容,敘述本節的概念和結論.
八、課后作業
1.教材P19第7題;
2.畫圖說明在同一平面內三條直線的位置關系及交點情況.
[補充內容]
1.試說明,如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.
2.在同一平面內,兩條直線的位置關系僅有兩種:相交或平行.但現實空間是立體的,
試想一想在空間中,兩條直線會有哪些位置關系呢?(用長方體來說明)
【《5.2.1平行線》教學設計】相關文章:
平行線的性質教學設計(通用12篇)05-26
平行線的性質教案設計(通用8篇)04-25
《標牌設計》的教學設計03-14
垂線的性質及平行線的判定總結10-21
旋轉的教學設計02-16
《茶經》教學設計02-18
《國殤》教學設計12-11
《賽馬》的教學設計05-21
國慶的教學設計03-19